Feasibility of studying astrophysically important charged-particle emission with the variable energy γ-ray system at the Extreme Light Infrastructure–Nuclear Physics facility

H. Y. Lan, W. Luo, Y. Xu, D. L. Balabanski, G. L. Guardo, M. La Cognata, D. Lattuada, C. Matei, R. G. Pizzone, T. Rauscher, and J. L. Zhou
Phys. Rev. C 105, 044618 – Published 27 April 2022

Abstract

In the environment of a hot plasma, as achieved in stellar explosions, capture and photodisintegration reactions proceeding on excited states in the nucleus can considerably contribute to the astrophysical reaction rate. Usually, such reaction rates including the excited-state contribution are obtained from theoretical calculations as the direct experimental determination of these astrophysical rates is currently unfeasible. Future experiments could provide constraining information on the current reaction models which would improve the predictive power of the theoretical reaction rates. In the present study, experiments of photodisintegration with charged-particle emission leading to specific excited states in the residual nucleus are proposed. The expected experimental results can be used to determine the particle-transmission coefficients in the model calculations of photodisintegration and capture reactions. With such constrained transmission coefficients, the astrophysical reaction rates especially involving the excited-state contributions can be better predicted and implemented in astrophysical simulations. In particular, (γ,p) and (γ,α) reactions in the mass and energy range relevant to the astrophysical p process are considered and the feasibility of measuring them with the ELISSA detector system at the future Variable Energy γ-ray (VEGA) facility at Extreme Light Infrastructure–Nuclear Physics is investigated. To this end, in a first step 17 reactions with proton emission and 17 reactions with α emission are selected and the dependence of calculated partial cross sections on the variation of nuclear property input is tested. The simulation results reveal that, for the (γ,p) reaction on 12 targets of Si29, Fe56,Se74,Sr84,Zr91,Ru96,98,Pd102,Cd106, and Sn115,117,119, and the (γ,α) reaction on five targets of V50,Sr87,Te123,125, and Sm149, the yields of the reaction channels with the transitions to the excited states in the residual nucleus, namely (γ,Xi) with i0, are relevant and even dominant. Therefore, these 17 reactions are considered in the further feasibility study. For each of the 17 photon-induced reactions, in order to attain the detectable limit of 100 counts per day for the total proton or α-particle yields, the minimum required γ-beam energies Elow for the measurements are estimated. It is further found that for each considered reaction, the total yields of the charged-particle X may be dominantly contributed from one, two, or three (γ,Xi) channels within a specific, narrow energy range of the incident γ beam. If the actual measurements of these photon-induced reactions are performed in this energy range, the sum of the yields of the dominant (γ,Xi) channels can be approximated by the measured yields of the charged particle X within acceptable uncertainty. This allows to experimentally obtain the yields of the (γ,Xi) channels which dominantly contribute to the total yields of X. Using the simulated yields, these energy ranges for each of the 17 photon-induced reactions are derived. Furthermore, the energy spectra of the (γ,Xi) channels with 0i10 are simulated for each considered reaction, with the incident γ-beam energies in the respective energy range as derived before. Based on the energy spectra, the identification of the individual dominant (γ,Xi) channels is discussed. It becomes evident that measurements of the photon-induced reactions with charged-particle emissions considered in this work are feasible with the VEGA+ELISSA system and will provide knowledge useful for nuclear astrophysics.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 1 October 2021
  • Accepted 31 March 2022

DOI:https://doi.org/10.1103/PhysRevC.105.044618

©2022 American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

H. Y. Lan1, W. Luo1,*, Y. Xu2,†, D. L. Balabanski2, G. L. Guardo3, M. La Cognata3, D. Lattuada3,4, C. Matei2, R. G. Pizzone3, T. Rauscher5,6, and J. L. Zhou1

  • 1School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
  • 2Extreme Light Infrastructure–Nuclear Physics (ELI-NP), Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), 077125 Buchurest-Magurele, Romania
  • 3INFN-Laboratori Nazionali del Sud, 95123 Catania, Italy
  • 4Università degli Studi di Enna KORE Viale delle Olimpiadi, 94100 Enna, Italy
  • 5Department of Physics, University of Basel, 4056 Basel, Switzerland
  • 6Centre for Astrophysics Research, University of Hertfordshire, Hatfield AL10 9AB, United Kingdom

  • *wen.luo@usc.edu.cn
  • yi.xu@eli-np.ro

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 105, Iss. 4 — April 2022

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×