Microscopic collective inertial masses for nuclear reaction in the presence of nucleonic effective mass

Kai Wen and Takashi Nakatsukasa
Phys. Rev. C 105, 034603 – Published 7 March 2022

Abstract

Collective inertial mass coefficients with respect to translational, relative, and rotational motions are microscopically calculated, along the collective reaction path self-consistently determined, based on the adiabatic self-consistent collective coordinate (ASCC) method. The impact of the time-odd component of the mean-field potential on the inertial masses are investigated. The results are compared with those calculated with the cranking formulas. The inertial masses based on the ASCC method reproduce the exact total nuclear mass for the translational motion as well as the exact reduced masses as the asymptotic values for the relative and rotational motions. In contrast, the cranking formulas fail to do so. This is due to the fact that the (local) Galilean invariance is properly restored in the ASCC method but violated in the cranking formulas. A model Hamiltonian for low-energy nuclear reaction is constructed with the microscopically derived potentials and inertial masses. The astrophysical S factors are calculated, which indicates the importance of microscopic calculation of proper inertial masses.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
2 More
  • Received 26 December 2021
  • Accepted 28 February 2022

DOI:https://doi.org/10.1103/PhysRevC.105.034603

©2022 American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

Kai Wen1,* and Takashi Nakatsukasa1,2,3

  • 1Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
  • 2Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
  • 3RIKEN Nishina Center, Wako 351-0198, Japan

  • *wenkai@nucl.ph.tsukuba.ac.jp

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 105, Iss. 3 — March 2022

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×