Three-body optical potentials in (d,p) reactions and their influence on indirect study of stellar nucleosynthesis

M. J. Dinmore, N. K. Timofeyuk, and J. S. Al-Khalili
Phys. Rev. C 104, 034614 – Published 10 September 2021

Abstract

Model uncertainties arising due to suppression of target excitations in the description of deuteron scattering and resulting in a modification of the two-body interactions in a three-body system are investigated for several (d,p) reactions serving as indirect tools for studying the astrophysical (p,γ) reactions relevant to rp process. The three-body nature of the deuteron-target potential is treated within the adiabatic distorted-wave approximation (ADWA) which relies on a dominant contribution from the components of the three-body deuteron-target wave function with small np separations. This results in a simple prescription for treating the explicit energy dependence of two-body optical potentials in a three-body system requiring nucleon optical potentials to be evaluated at a shifted energy with respect to the standard value of half the deuteron incident energy. In addition, the ADWA allows for leading-order multiple-scattering effects to be estimated, which leads to a simple renormalization of the adiabatic potential's imaginary part by a factor of two. These effects are assessed using both nonlocal and local optical potential systematics for Al26, P30, Cl34, and Ni56 targets at a deuteron incident energy of 12 MeV, which is typical for experiments with radioactive beams in inverse kinematics. The model uncertainties induced by the three-body nature of deuteron-target scattering are found to be within 40% both in the main peak of angular distributions and in total (d,p) cross sections. At higher deuteron energies, around 60 MeV, model uncertainties can reach 100% in the total cross sections. A few examples of application to astrophysically interesting proton resonances in Si27 and Cu57 obtained using (d,p) reactions and mirror symmetry are given.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 17 June 2021
  • Accepted 30 August 2021

DOI:https://doi.org/10.1103/PhysRevC.104.034614

©2021 American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

M. J. Dinmore, N. K. Timofeyuk, and J. S. Al-Khalili

  • Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 104, Iss. 3 — September 2021

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×