First Penning trap mass measurement of Ca36

J. Surbrook, G. Bollen, M. Brodeur, A. Hamaker, D. Pérez-Loureiro, D. Puentes, C. Nicoloff, M. Redshaw, R. Ringle, S. Schwarz, C. S. Sumithrarachchi, L. J. Sun, A. A. Valverde, A. C. C. Villari, C. Wrede, and I. T. Yandow
Phys. Rev. C 103, 014323 – Published 29 January 2021

Abstract

Background: Isobaric quintets provide the best test of the isobaric multiplet mass equation (IMME) and can uniquely identify higher order corrections suggestive of isospin symmetry breaking effects in the nuclear Hamiltonian. The generalized IMME (GIMME) is a novel microscopic interaction theory that predicts an extension to the quadratic form of the IMME. Only the A=20,32 T=2 quintets have the exotic Tz=2 member ground state mass determined to high precision by Penning trap mass spectrometry.

Purpose: We aim to establish A=36 as the third T=2 isobaric quintet with the Tz=2 member ground state mass measured by Penning trap mass spectrometry and provide the first test of the predictive power of the GIMME.

Method: A radioactive beam of neutron-deficient Ca36 was produced by projectile fragmentation at the National Superconducting Cyclotron Laboratory. The beam was thermalized and the masses of Ca+36 and Ca2+36 were measured by the time-of-flight ion cyclotron resonance method in the LEBIT 9.4 T Penning trap.

Results: We measure the mass excess of Ca36 to be ME=6483.6(56) keV, an improvement in precision by a factor of 6 over the literature value. The new datum is considered together with evaluated nuclear data on the A=36, T=2 quintet. We find agreement with the quadratic form of the IMME given by isospin symmetry, but only coarse qualitative agreement with predictions of the GIMME.

Conclusion: A total of three isobaric quintets have their most exotic members measured by Penning trap mass spectrometry. The GIMME predictions in the T=2 quintet appear to break down for A=32 and greater.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 11 May 2020
  • Accepted 7 December 2020

DOI:https://doi.org/10.1103/PhysRevC.103.014323

©2021 American Physical Society

Physics Subject Headings (PhySH)

Nuclear PhysicsAtomic, Molecular & Optical

Authors & Affiliations

J. Surbrook1,2, G. Bollen1,3, M. Brodeur4, A. Hamaker1,2, D. Pérez-Loureiro2, D. Puentes1,2, C. Nicoloff1,2, M. Redshaw5,2, R. Ringle2, S. Schwarz2, C. S. Sumithrarachchi2, L. J. Sun2, A. A. Valverde6, A. C. C. Villari3, C. Wrede1,2, and I. T. Yandow1,2

  • 1Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
  • 2National Superconducting Cyclotron Laboratory, East Lansing, Michigan 48824, USA
  • 3Facility for Rare Isotope Beams, East Lansing, Michigan 48824, USA
  • 4Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
  • 5Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA
  • 6Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 103, Iss. 1 — January 2021

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×