Influence of Rb73 on the ashes of accreting neutron stars

D. E. M. Hoff, A. M. Rogers, Z. Meisel, P. C. Bender, K. Brandenburg, K. Childers, J. A. Clark, A. C. Dombos, E. R. Doucet, S. Jin, R. Lewis, S. N. Liddick, C. J. Lister, C. Morse, H. Schatz, K. Schmidt, D. Soltesz, S. K. Subedi, S. M. Wang (王思敏), and S. Waniganeththi
Phys. Rev. C 102, 045810 – Published 20 October 2020
PDFHTMLExport Citation

Abstract

We find that the proton separation energy, S(p), of Rb73 is 640(40) keV, deduced from the observation of β-delayed ground-state protons following the decay of Sr73. This lower-limit determination of the proton separation energy of Rb73 coupled with previous upper limits from nonobservation, provides a full constraint on the mass excess with ΔM(73Rb)=46.01±0.04 MeV. With this new mass excess and the excitation energy of the Jπ=5/2 isobaric-analog state (T=3/2) in Rb73, an improved constraint can be put on the mass excess of Sr73 using the isobaric-multiplet mass equation (IMME), and we find ΔM(73Sr)=31.98±0.37 MeV. These new data were then used to study the composition of ashes on accreting neutron stars following Type I x-ray bursts. Counterintuitively, we find that there should be an enhanced fraction of A>102 nuclei with more negative proton separation energies at the Kr72 rp-process waiting point. Larger impurities of heavier nuclei in the ashes of accreting neutron stars will impact the cooling models for such astrophysical scenarios.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 1 July 2020
  • Accepted 28 September 2020

DOI:https://doi.org/10.1103/PhysRevC.102.045810

©2020 American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

D. E. M. Hoff1,*, A. M. Rogers1,†, Z. Meisel2, P. C. Bender1, K. Brandenburg2, K. Childers3,4, J. A. Clark5, A. C. Dombos3,6,7, E. R. Doucet1, S. Jin3,6,7, R. Lewis3,4, S. N. Liddick3,4, C. J. Lister1, C. Morse1,‡, H. Schatz3,6,7, K. Schmidt3,7,§, D. Soltesz2, S. K. Subedi2, S. M. Wang (王思敏)3, and S. Waniganeththi1

  • 1Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA
  • 2Institute of Nuclear and Particle Physics, Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
  • 3National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
  • 4Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
  • 5Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
  • 6Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
  • 7JINA-CEE, Michigan State University, East Lansing, Michigan 48824, USA

  • *daniel_hoff@uml.edu
  • andrew_rogers@uml.edu
  • Present address: Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
  • §Present address: Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 102, Iss. 4 — October 2020

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×