Measurement of the 7Li(γ,t)4He ground-state cross section between Eγ=4.4 and 10 MeV

M. Munch, C. Matei, S. D. Pain, M. T. Febbraro, K. A. Chipps, H. J. Karwowski, C. Aa. Diget, A. Pappalardo, S. Chesnevskaya, G. L. Guardo, D. Walter, D. L. Balabanski, F. D. Becchetti, C. R. Brune, K. Y. Chae, J. Frost-Schenk, M. J. Kim, M. S. Kwag, M. La Cognata, D. Lattuada, R. G. Pizzone, G. G. Rapisarda, G. V. Turturica, C. A. Ur, and Y. Xu
Phys. Rev. C 101, 055801 – Published 14 May 2020

Abstract

The Li7(γ,t)He4 ground state cross section was measured for the first time using monoenergetic γ rays with energies between 4.4 and 10 MeV at the High Intensity Gamma-ray Source. The reaction is important for the primordial Li problem and for testing our understanding of the mirror α-capture reactions H3(α,γ)Li7 and He3(α,γ)Be7. Although over the last 30 years most measurements of the H3(α,γ)Li7 reaction have concentrated in an energy range below Eγ=3.65 MeV, measurements at higher energies could potentially restrict the extrapolation to astrophysically important energies. The experimental arrangement for measuring the Li7(γ,t)He4 reaction included a large-area silicon detector array and several beam characterization instruments. The experimental astrophysical S factor of H3(α,γ) calculated from the present data was fitted using the R-matrix formalism. The results are in disagreement with previous experimental measurements in the same energy range but the extrapolated S factor agrees with the potential model calculation and lower energy experimental data.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
6 More
  • Received 6 September 2019
  • Revised 11 March 2020
  • Accepted 6 April 2020

DOI:https://doi.org/10.1103/PhysRevC.101.055801

©2020 American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

M. Munch1,2, C. Matei3,*, S. D. Pain4, M. T. Febbraro4, K. A. Chipps4, H. J. Karwowski5,6, C. Aa. Diget2, A. Pappalardo3, S. Chesnevskaya3, G. L. Guardo3,7, D. Walter8, D. L. Balabanski3, F. D. Becchetti9, C. R. Brune10, K. Y. Chae11, J. Frost-Schenk2, M. J. Kim11, M. S. Kwag11, M. La Cognata7, D. Lattuada3, R. G. Pizzone7, G. G. Rapisarda7, G. V. Turturica3, C. A. Ur3, and Y. Xu3

  • 1Department of Physics and Astronomy, Aarhus University 8000 Aarhus C, Denmark
  • 2Department of Physics, University of York, York YO10 5DD, United Kingdom
  • 3Extreme Light Infrastructure - Nuclear Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Bucharest-Magurele, 077125, Romania
  • 4Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
  • 5Department of Physics, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina 27599, USA
  • 6Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
  • 7INFN-Laboratori Nazionali del Sud, Catania, Italy
  • 8Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903, USA
  • 9Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
  • 10Ohio University, Athens, Ohio 45701, USA
  • 11Department of Physics, Sungkyunkwan University, Suwon 16419, Korea

  • *Corresponding author: Catalin.Matei@eli-np.ro

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 101, Iss. 5 — May 2020

Reuse & Permissions
Access Options

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×