Inverse-kinematics proton scattering from S42,44, P41,43, and the collapse of the N=28 major shell closure

L. A. Riley, D. Bazin, J. Belarge, P. C. Bender, B. A. Brown, P. D. Cottle, B. Elman, A. Gade, S. D. Gregory, E. B. Haldeman, K. W. Kemper, B. R. Klybor, M. A. Liggett, S. Lipschutz, B. Longfellow, E. Lunderberg, T. Mijatovic, J. Pereira, L. M. Skiles, R. Titus, A. Volya, D. Weisshaar, J. C. Zamora, and R. G. T. Zegers
Phys. Rev. C 100, 044312 – Published 17 October 2019; Erratum Phys. Rev. C 101, 059902 (2020)

Abstract

Excited states of the neutron-rich isotopes S42,44 and P41,43 have been studied via inverse-kinematics proton scattering from a liquid hydrogen target, using the GRETINA γ-ray tracking array to extract inelastic-scattering cross sections. Deformation lengths of the 21+ excitations in S42,44 have been determined and, when combined with deformation lengths determined with electromagnetic probes, yield the ratio of neutron-to-proton matrix elements Mn/Mp for the 21+ excitations in these nuclei. The present results for P41,43(p,p) are used to compare two shell-model interactions, SDPF-U and SDPF-MU. As in a recent study of Si42, the present results on P41,43 favor the SDPF-MU interaction.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
7 More
  • Received 30 March 2019
  • Revised 17 July 2019

DOI:https://doi.org/10.1103/PhysRevC.100.044312

©2019 American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Erratum

Erratum: Inverse-kinematics proton scattering from S42,44,P41,43, and the collapse of the N=28 major shell closure [Phys. Rev. C 100, 044312 (2019)]

L. A. Riley, D. Bazin, J. Belarge, P. C. Bender, B. A. Brown, P. D. Cottle, B. Elman, A. Gade, S. D. Gregory, E. B. Haldeman, K. W. Kemper, B. R. Klybor, M. A. Liggett, S. Lipschutz, B. Longfellow, E. Lunderberg, T. Mijatovic, J. Pereira, L. M. Skiles, R. Titus, A. Volya, D. Weisshaar, J. C. Zamora, and R. G. T. Zegers
Phys. Rev. C 101, 059902 (2020)

Authors & Affiliations

L. A. Riley1, D. Bazin2,3, J. Belarge2,3,*, P. C. Bender2, B. A. Brown2,3, P. D. Cottle4, B. Elman2,3, A. Gade2,3, S. D. Gregory1, E. B. Haldeman1, K. W. Kemper4, B. R. Klybor1, M. A. Liggett1, S. Lipschutz2,3, B. Longfellow2,3, E. Lunderberg2,3, T. Mijatovic2, J. Pereira2,3, L. M. Skiles1, R. Titus2,3, A. Volya4, D. Weisshaar2, J. C. Zamora2, and R. G. T. Zegers2,3,5

  • 1Department of Physics and Astronomy, Ursinus College, Collegeville, Pennsylvania 19426, USA
  • 2National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
  • 3Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
  • 4Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
  • 5Joint Institute for Nuclear Astrophysics-Center for the Evolution of the Elements, Michigan State University, East Lansing, Michigan 48824, USA

  • *J. Belarge is currently a MIT Lincoln Laboratory employee. No Laboratory funding or resources were used to produce the results/findings reported in this article.

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 100, Iss. 4 — October 2019

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×