First-principles bulk-layer model for dielectric and piezoelectric responses in superlattices

J. Bonini, J. W. Bennett, P. Chandra, and K. M. Rabe
Phys. Rev. B 99, 104107 – Published 22 March 2019
PDFHTMLExport Citation

Abstract

In the first-principles bulk-layer model the superlattice structure and polarization are determined by first-principles computation of the bulk responses of the constituents to the electrical and mechanical boundary conditions in an insulating superlattice. In this work the model is extended to predict functional properties, specifically dielectric permittivity and piezoelectric response. A detailed comparison between the bulk-layer model and full first-principles calculations for three sets of perovskite oxide superlattices, PbTiO3/BaTiO3, BaTiO3/SrTiO3, and PbTiO3/SrTiO3, is presented. The bulk-layer model is shown to give an excellent first approximation to these important functional properties and to allow for the identification and investigation of additional physics, including interface reconstruction and finite-size effects. Technical issues in the generation of the necessary data for constituent compounds are addressed. These results form the foundation for a powerful data-driven method to facilitate discovery and design of superlattice systems with enhanced and tunable polarization, dielectric permittivity, and piezoelectric response.

  • Figure
  • Figure
  • Received 11 October 2018
  • Revised 17 February 2019

DOI:https://doi.org/10.1103/PhysRevB.99.104107

©2019 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

J. Bonini, J. W. Bennett, P. Chandra, and K. M. Rabe

  • Department of Physics and Astronomy Rutgers University, Piscataway, NJ 08854, USA

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 99, Iss. 10 — 1 March 2019

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×