Magnetic phase diagram of the frustrated spin chain compound linarite PbCuSO4(OH)2 as seen by neutron diffraction and H1-NMR

L. Heinze, G. Bastien, B. Ryll, J.-U. Hoffmann, M. Reehuis, B. Ouladdiaf, F. Bert, E. Kermarrec, P. Mendels, S. Nishimoto, S.-L. Drechsler, U. K. Rößler, H. Rosner, B. Büchner, A. J. Studer, K. C. Rule, S. Süllow, and A. U. B. Wolter
Phys. Rev. B 99, 094436 – Published 25 March 2019

Abstract

We report on a detailed neutron diffraction and H1-NMR study on the frustrated spin-1/2 chain material linarite, PbCuSO4(OH)2, where competing ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor interactions lead to frustration. From the magnetic Bragg peak intensity studied down to 60 mK, the magnetic moment per Cu atom is obtained within the whole magnetic phase diagram for Hb axis. Further, we establish the detailed configurations of the shift of the SDW propagation vector in phase V with field and temperature. Finally, combining our neutron diffraction results with those from a low-temperature/high-field NMR study, we find an even more complex phase diagram close to the quasisaturation field suggesting that bound two-magnon excitations are the lowest energy excitations close to and in the quasisaturation regime. Qualitatively and semiquantitatively, we relate such behavior to XYZ exchange anisotropy and contributions from the Dzyaloshinsky-Moriya interaction to affect the magnetic properties of linarite.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
6 More
  • Received 14 January 2019

DOI:https://doi.org/10.1103/PhysRevB.99.094436

©2019 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

L. Heinze1, G. Bastien2, B. Ryll3, J.-U. Hoffmann3, M. Reehuis3, B. Ouladdiaf4, F. Bert5, E. Kermarrec5, P. Mendels5, S. Nishimoto2,6, S.-L. Drechsler2, U. K. Rößler2, H. Rosner7, B. Büchner2,8, A. J. Studer9, K. C. Rule9, S. Süllow1, and A. U. B. Wolter2

  • 1Institut für Physik der Kondensierten Materie, TU Braunschweig, D-38106 Braunschweig, Germany
  • 2Leibniz-Institut für Festkörper- und Werkstoffforschung IFW Dresden, D-01171 Dresden, Germany
  • 3Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
  • 4Institute Laue-Langevin, F-38042 Grenoble Cedex, France
  • 5Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay Cedex, France
  • 6Institut für Theoretische Physik, Technische Universität Dresden, D-01068 Dresden, Germany
  • 7Max-Planck-Institut für Chemische Physik fester Stoffe, D-01068 Dresden, Germany
  • 8Institut für Festkörper- und Materialphysik, Technische Universität Dresden, D-01062 Dresden, Germany
  • 9Australian Centre for Neutron Scattering, ANSTO, Kirrawee DC, New South Wales 2234, Australia

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 99, Iss. 9 — 1 March 2019

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×