Renormalization of the quantum dot g-factor in superconducting Rashba nanowires

Olesia Dmytruk, Denis Chevallier, Daniel Loss, and Jelena Klinovaja
Phys. Rev. B 98, 165403 – Published 1 October 2018

Abstract

We study analytically and numerically the renormalization of the g-factor in semiconducting Rashba nanowires (NWs), consisting of a normal and superconducting section. If the potential barrier between the sections is high, a quantum dot (QD) is formed in the normal section. For harmonic (hard-wall) confinement, the effective g-factor of all QD levels is suppressed exponentially (power law) in the product of the spin-orbit interaction (SOI) wave vector and the QD length. If the barrier between the two sections is removed, the g-factor of the emerging Andreev bound states is suppressed less strongly. In the strong SOI regime, and if the chemical potential is tuned to the SOI energy in both sections, the g-factor saturates to a universal constant. Remarkably, the effective g-factor shows a pronounced peak at the SOI energy as function of the chemical potentials. In addition, if the SOI is uniform, the g-factor renormalization as a function of the chemical potential is given by a universal dependence, which is independent of the QD size. This prediction provides a powerful tool to determine experimentally whether the SOI in the whole NW is uniform and, moreover, gives direct access to the SOI strengths of the NW via g-factor measurements. In addition, it allows one to find the optimum position of the chemical potential for bringing the NW into the topological phase at large magnetic fields.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
5 More
  • Received 18 June 2018
  • Revised 10 August 2018

DOI:https://doi.org/10.1103/PhysRevB.98.165403

©2018 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Olesia Dmytruk, Denis Chevallier, Daniel Loss, and Jelena Klinovaja

  • Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 98, Iss. 16 — 15 October 2018

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×