Topological symmetry classes for non-Hermitian models and connections to the bosonic Bogoliubov–de Gennes equation

Simon Lieu
Phys. Rev. B 98, 115135 – Published 19 September 2018

Abstract

The Bernard-LeClair (BL) symmetry classes generalize the Altland-Zirnbauer classes in the absence of Hermiticity. Within the BL scheme, time-reversal and particle-hole symmetry come in two flavors, and “pseudo-Hermiticity” generalizes Hermiticity. We propose that these symmetries are relevant for the topological classification of non-Hermitian single-particle Hamiltonians and Hermitian bosonic Bogoliubov–de Gennes (BdG) models. We show that the spectrum of any Hermitian bosonic BdG Hamiltonian is found by solving for the eigenvalues of a non-Hermitian matrix which belongs to one of the BL classes. We therefore suggest that bosonic BdG Hamiltonians inherit the topological properties of a non-Hermitian symmetry class and explore the consequences by studying symmetry-protected edge instabilities in a one-dimensional system.

  • Figure
  • Received 27 June 2018

DOI:https://doi.org/10.1103/PhysRevB.98.115135

©2018 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Simon Lieu

  • Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 98, Iss. 11 — 15 September 2018

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×