Rare-earth/transition-metal magnets at finite temperature: Self-interaction-corrected relativistic density functional theory in the disordered local moment picture

Christopher E. Patrick and Julie B. Staunton
Phys. Rev. B 97, 224415 – Published 14 June 2018

Abstract

Atomic-scale computational modeling of technologically relevant permanent magnetic materials faces two key challenges. First, a material's magnetic properties depend sensitively on temperature, so the calculations must account for thermally induced magnetic disorder. Second, the most widely used permanent magnets are based on rare-earth elements, whose highly localized 4f electrons are poorly described by standard electronic structure methods. Here, we take two established theories, the disordered local moment picture of thermally induced magnetic disorder and self-interaction-corrected density functional theory, and devise a computational framework to overcome these challenges. Using this approach, we calculate magnetic moments and Curie temperatures of the rare-earth cobalt (RECo5) family for RE = Y-Lu. The calculations correctly reproduce the experimentally measured trends across the series and confirm that, apart from the hypothetical compound EuCo5, SmCo5 has the strongest magnetic properties at high temperature. An order-parameter analysis demonstrates that varying the RE has a surprisingly strong effect on the Co-Co magnetic interactions determining the Curie temperature, even when the lattice parameters are kept fixed. We propose the origin of this behavior is a small contribution to the density from f-character electrons located close to the Fermi level.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 16 March 2018
  • Revised 18 May 2018

DOI:https://doi.org/10.1103/PhysRevB.97.224415

©2018 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Christopher E. Patrick* and Julie B. Staunton

  • Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

  • *c.patrick.1@warwick.ac.uk

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 97, Iss. 22 — 1 June 2018

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×