Bloch-Floquet waves in optical ring resonators

Kathleen McGarvey-Lechable and Pablo Bianucci
Phys. Rev. B 97, 214204 – Published 19 June 2018
PDFHTMLExport Citation

Abstract

Modal coupling between frequency-degenerate resonances of an optical ring resonator is a commonly observed phenomenon that results in adverse mode splitting. Traditionally, this coupling is attributed to Rayleigh scattering of a propagating electromagnetic wave into its associated degenerate counterpropagating mode from small perturbations to the dielectric material of the resonator. We have chosen to reframe the problem of intracavity Rayleigh scattering by considering the optical ring resonator as an infinitely long, one-dimensional photonic crystal (PhC) that possesses a lattice constant equal to the perimeter of the ring. Through application of Bloch-Floquet theory, we show that modal coupling between degenerate resonances of a ring can effectively be described as the formation of photonic frequency bands in the dispersion relation of the resonator. We additionally demonstrate that the Bragg planes of the PhC lattice coincide with the phase matching conditions for constructive interference in the ring. Finally, we show that the magnitude of frequency splitting of a particular resonance is proportional to its associated coefficient in the Fourier expansion of the ring's periodic dielectric function. The fine control of the mode splitting that can be obtained in this way provides a straightforward way to obtain ring resonances with anomalous dispersion in arbitrary wavelength ranges.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 1 April 2018
  • Revised 4 June 2018

DOI:https://doi.org/10.1103/PhysRevB.97.214204

©2018 American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & OpticalCondensed Matter, Materials & Applied Physics

Authors & Affiliations

Kathleen McGarvey-Lechable and Pablo Bianucci*

  • Department of Physics, Concordia University, Montréal, Québec, Canada H4B 1R6

  • *pablo.bianucci@concordia.ca

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 97, Iss. 21 — 1 June 2018

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×