• Editors' Suggestion

Influence of the effective layer thickness on the ground-state and excitonic properties of transition-metal dichalcogenide systems

L. Meckbach, T. Stroucken, and S. W. Koch
Phys. Rev. B 97, 035425 – Published 18 January 2018

Abstract

A self-consistent scheme for the calculations of the interacting ground state and the near band-gap optical spectra of mono- and multilayer transition-metal-dichalcogenide systems is presented. The approach combines a dielectric model for the Coulomb interaction potential in a multilayer environment, gap equations for the renormalized ground state, and the Dirac-Wannier equation to determine the excitonic properties. To account for the extension of the individual monolayers perpendicular to their basic plane, an effective thickness parameter in the Coulomb interaction potential is introduced. Numerical evaluations show that the resulting finite thickness effects lead to significant modifications in the optical spectra, reproducing the experimentally observed nonhydrogenic features of the excitonic resonance series. Applying the theory for a variety of experimentally relevant configurations, a consistent description of the near band-gap optical properties is obtained all the way from monolayer to bulk. In addition to the well-known in-plane excitons, also interlayer excitons occur in multilayer systems suggesting a reinterpretation of experimental results obtained for bulk material.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
7 More
  • Received 26 September 2017
  • Revised 22 December 2017

DOI:https://doi.org/10.1103/PhysRevB.97.035425

©2018 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

L. Meckbach, T. Stroucken*, and S. W. Koch

  • Department of Physics and Material Sciences Center, Philipps University Marburg, Renthof 5, D-35032 Marburg, Germany

  • *Corresponding author: tineke.stroucken@physik.uni-marburg.de

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 97, Iss. 3 — 15 January 2018

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×