High-pressure phases of VO2 from the combination of Raman scattering and ab initio structural search

Victor Balédent, Tiago T. F. Cerqueira, Rafael Sarmiento-Pérez, Abhay Shukla, Christophe Bellin, Marino Marsi, Jean-Paul Itié, Matteo Gatti, Miguel A. L. Marques, Silvana Botti, and Jean-Pascal Rueff
Phys. Rev. B 97, 024107 – Published 17 January 2018

Abstract

Despite more than 50 years of investigation, the understanding of the metal-insulator transition in VO2 remains incomplete and requires additional experimental and theoretical works. Using Raman scattering under pressure, we first confirm the known transition around 11 GPa affecting the V orbital occupancy in the absence of structural changes. Moreover, we disclose a transition around 19 GPa involving the V orbitals together with a structural distortion, revealed by the splitting of a phonon branch associated with the V chains. The high-pressure metallic X phase is found to be of low symmetry and becomes the lowest-enthalpy structure at high pressure by ab initio structural prediction calculations. In contrast to a well-established picture of the metal-insulator transition (i.e., the Peierls transition), the high-pressure metallic phase here is of lower symmetry than the ambient pressure insulating phase.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 21 March 2016
  • Revised 22 December 2017

DOI:https://doi.org/10.1103/PhysRevB.97.024107

©2018 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Victor Balédent1, Tiago T. F. Cerqueira2,3, Rafael Sarmiento-Pérez3, Abhay Shukla4, Christophe Bellin4, Marino Marsi1, Jean-Paul Itié5, Matteo Gatti6,7,5, Miguel A. L. Marques8, Silvana Botti2, and Jean-Pascal Rueff5,9

  • 1Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay 91405 Orsay Cedex, France
  • 2Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität Jena and European Theoretical Spectroscopy Facility, Max-Wien-Platz 1, 07743 Jena, Germany
  • 3Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne Cedex, France
  • 4Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UPMC Sorbonne Universités, UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD UMR 206, Paris 75005, France
  • 5Synchrotron SOLEIL, Saint-Aubin, Boîte Postale 48, 91192 Gif-sur-Yvette Cedex, France
  • 6Laboratoire des Solides Irradiés, École Polytechnique, CNRS, CEA, Université Paris-Saclay, F-91128 Palaiseau, France
  • 7European Theoretical Spectroscopy Facility (ETSF)
  • 8Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany
  • 9Laboratoire de Chimie Physique–Matière et Rayonnement, UPMC Sorbonne Universités, UMR CNRS 7614, Paris 75005, France

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 97, Iss. 2 — 1 January 2018

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×