Metallization of solid molecular hydrogen in two dimensions: Mott-Hubbard-type transition

Andrzej Biborski, Andrzej P. Kądzielawa, and Józef Spałek
Phys. Rev. B 96, 085101 – Published 1 August 2017

Abstract

We analyze the pressure-induced metal-insulator transition in a two-dimensional vertical stack of H2 molecules in (x-y) plane, and show that it represents a striking example of the Mott-Hubbard-type transition. Our combined exact diagonalization approach, formulated and solved in the second quantization formalism, includes also simultaneous ab initio readjustment of the single-particle wave functions, contained in the model microscopic parameters. The system is studied as a function of applied side force (generalized pressure), both in the H2-molecular and H-quasiatomic states. Extended Hubbard model is taken at the start, together with longer-range electron-electron interactions incorporated into the scheme. The stacked molecular plane transforms discontinuously into a (quasi)atomic state under the applied force via a two-step transition: the first between molecular insulating phases and the second from the molecular to the quasiatomic metallic phase. No quasiatomic insulating phase occurs. All the transitions are accompanied by abrupt changes of the bond length and the intermolecular distance (lattice parameter), as well as by discontinuous changes of the principal electronic properties, which are characteristic of the Mott-Hubbard transition here associated with the jumps of the predetermined equilibrium lattice parameter and the effective bond length. The phase transition can be interpreted in terms of the solid hydrogen metallization under pressure exerted by, e.g., the substrate covered with a monomolecular H2 film of the vertically stacked molecules. Both the Mott and Hubbard criteria at the insulator to metal transition are discussed.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
9 More
  • Received 22 February 2017

DOI:https://doi.org/10.1103/PhysRevB.96.085101

©2017 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Andrzej Biborski1,*, Andrzej P. Kądzielawa2,†, and Józef Spałek2,‡

  • 1Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, PL-30-059 Kraków, Poland
  • 2Marian Smoluchowski Institute of Physics, Jagiellonian University, ulica Łojasiewicza 11, PL-30-348 Kraków, Poland

  • *andrzej.biborski@agh.edu.pl
  • kadzielawa@th.if.uj.edu.pl
  • jozef.spalek@uj.edu.pl

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 96, Iss. 8 — 15 August 2017

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×