Dimensional reduction of the Luttinger Hamiltonian and g-factors of holes in symmetric two-dimensional semiconductor heterostructures

D. S. Miserev and O. P. Sushkov
Phys. Rev. B 95, 085431 – Published 23 February 2017

Abstract

The spin-orbit interaction of holes in zinc-blende semiconductors is much stronger than that of electrons. This makes the hole systems very attractive for possible spintronics applications. In three dimensions (3D), the dynamics of holes is described by well-known Luttinger Hamiltonian. However, most recent spintronics applications are related to two-dimensional (2D) heterostructures where dynamics in one direction is frozen due to quantum confinement. The confinement results in dimensional reduction of the Luttinger Hamiltonian, 3D2D. Due to the interplay of the spin-orbit interaction, the external magnetic field, and the lateral gate potential imposed on the heterostructure, the reduction is highly nontrivial and as yet unknown. In the present work we perform the reduction and hence derive the general effective Hamiltonian which describes spintronics effects in symmetric 2D heterostructures. In particular, we do the following: (i) derive the spin-orbit interaction and the Darwin interaction related to the lateral gate potential, (ii) determine the momentum-dependent out-of-plane g-factor, (iii) point out that there are two independent in-plane g-factors, (iv) determine momentum dependencies of the in-plane g-factors.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 10 October 2016

DOI:https://doi.org/10.1103/PhysRevB.95.085431

©2017 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

D. S. Miserev and O. P. Sushkov

  • School of Physics, University of New South Wales, Sydney, Australia

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 95, Iss. 8 — 15 February 2017

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×