Coupling quantum Monte Carlo and independent-particle calculations: Self-consistent constraint for the sign problem based on the density or the density matrix

Mingpu Qin, Hao Shi, and Shiwei Zhang
Phys. Rev. B 94, 235119 – Published 7 December 2016

Abstract

Quantum Monte Carlo (QMC) methods are one of the most important tools for studying interacting quantum many-body systems. The vast majority of QMC calculations in interacting fermion systems require a constraint to control the sign problem. The constraint involves an input trial wave function which restricts the random walks. We introduce a systematically improvable constraint which relies on the fundamental role of the density or one-body density matrix. An independent-particle calculation is coupled to an auxiliary-field QMC calculation. The independent-particle solution is used as the constraint in QMC, which then produces the input density or density matrix for the next iteration. The constraint is optimized by the self-consistency between the many-body and the independent-particle calculations. The approach is demonstrated in the two-dimensional Hubbard model by accurately determining the ground state when collective modes separated by tiny energy scales are present in the magnetic and charge correlations. Our approach also provides an ab initio way to predict effective interaction parameters for independent-particle calculations.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 29 August 2016
  • Revised 16 November 2016

DOI:https://doi.org/10.1103/PhysRevB.94.235119

©2016 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Mingpu Qin, Hao Shi, and Shiwei Zhang

  • Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 94, Iss. 23 — 15 December 2016

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×