Role of magnetic dopants in the phase diagram of Sm 1111 pnictides: The case of Mn

G. Lamura, T. Shiroka, S. Bordignon, S. Sanna, M. Moroni, R. De Renzi, P. Carretta, P. K. Biswas, F. Caglieris, M. Putti, S. Wurmehl, S. J. Singh, J. Shimoyama, M. N. Gastiasoro, and B. M. Andersen
Phys. Rev. B 94, 214517 – Published 23 December 2016

Abstract

The deliberate insertion of magnetic Mn dopants in the Fe sites of the optimally doped SmFeAsO0.88F0.12 iron-based superconductor can modify in a controlled way its electronic properties. The resulting phase diagram was investigated across a wide range of manganese contents (x) by means of muon-spin spectroscopy (μSR), both in zero and in transverse fields, to probe the magnetic and the superconducting order, respectively. The pure superconducting phase (at x<0.03) is replaced by a crossover region at intermediate Mn values (0.03x<0.08), where superconductivity coexists with static magnetic order. After completely suppressing superconductivity for x=0.08, a further increase in Mn content reinforces the natural tendency towards antiferromagnetic correlations among the magnetic Mn ions. The sharp drop of Tc and the induced magnetic order in the presence of magnetic disorder/dopants, such as Mn, are both consistent with a recent theoretical model of unconventional superconductors (M. N. Gastiasoro et al., Phys. Rev. Lett. 117, 257002 (2016)), which includes correlation-enhanced RKKY couplings between the impurity moments.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
6 More
  • Received 3 September 2016
  • Revised 14 November 2016

DOI:https://doi.org/10.1103/PhysRevB.94.214517

©2016 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

G. Lamura1, T. Shiroka2,3, S. Bordignon4, S. Sanna5,6, M. Moroni5, R. De Renzi4, P. Carretta5, P. K. Biswas3,7, F. Caglieris1,8, M. Putti1,8, S. Wurmehl9, S. J. Singh9,10, J. Shimoyama10, M. N. Gastiasoro11, and B. M. Andersen11

  • 1CNR-SPIN, Corso Perrone 24, I-161526 Genova, Italy
  • 2Laboratorium für Festkörperphysik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
  • 3Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
  • 4Dipartimento di Fisica e Scienze della Terra, Viale delle Scienze 7A, I-43124 Parma, Italy
  • 5Dipartimento di Fisica and Unità CNISM di Pavia, I-27100 Pavia, Italy
  • 6Department of Physics and Astronomy, University of Bologna, I-40127 Bologna, Italy
  • 7ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
  • 8Dipartimento di Fisica, Università di Genova, via Dodecaneso 33, I-16146 Genova, Italy
  • 9IFW Dresden, Institute for Solid State Research, P.O. Box 270116, D-01171 Dresden, Germany
  • 10Department of Physics and Mathematics, Aoyama Gakuin University, Japan
  • 11Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 94, Iss. 21 — 1 December 2016

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×