Superparamagnetism-induced mesoscopic electron focusing in topological insulators

P. Sessi, P. Rüßmann, T. Bathon, A. Barla, K. A. Kokh, O. E. Tereshchenko, K. Fauth, S. K. Mahatha, M. A. Valbuena, S. Godey, F. Glott, A. Mugarza, P. Gargiani, M. Valvidares, N. H. Long, C. Carbone, P. Mavropoulos, S. Blügel, and M. Bode
Phys. Rev. B 94, 075137 – Published 17 August 2016
PDFHTMLExport Citation

Abstract

Recently it has been shown that surface magnetic doping of topological insulators induces backscattering of Dirac states which are usually protected by time-reversal symmetry [Sessi et al., Nat. Commun. 5, 5349 (2014)]. Here we report on quasiparticle interference measurements where, by improved Fermi level tuning, strongly focused interference patterns on surface Mn-doped Bi2Te3 could be directly observed by means of scanning tunneling microscopy at 4 K. Ab initio and model calculations reveal that their mesoscopic coherence relies on two prerequisites: (i) a hexagonal Fermi surface with large parallel segments (nesting) and (ii) magnetic dopants which couple to a high-spin state. Indeed, x-ray magnetic circular dichroism shows superparamagnetism even at very dilute Mn concentrations. Our findings provide evidence of strongly anisotropic Dirac-fermion-mediated interactions and demonstrate how spin information can be transmitted over long distances, allowing the design of experiments and devices based on coherent quantum effects in topological insulators.

  • Figure
  • Figure
  • Figure
  • Received 1 March 2016
  • Revised 27 July 2016

DOI:https://doi.org/10.1103/PhysRevB.94.075137

©2016 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

P. Sessi1,*, P. Rüßmann2, T. Bathon1, A. Barla3, K. A. Kokh4,5, O. E. Tereshchenko5,6, K. Fauth1,7, S. K. Mahatha3, M. A. Valbuena8, S. Godey8, F. Glott1, A. Mugarza8,9, P. Gargiani10, M. Valvidares10, N. H. Long2, C. Carbone3, P. Mavropoulos2, S. Blügel2, and M. Bode1,7

  • 1Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
  • 2Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
  • 3Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy
  • 4V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
  • 5Novosibirsk State University, 630090 Novosibirsk, Russia
  • 6A.V. Rzanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
  • 7Wilhelm Conrad Röntgen-Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
  • 8Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology, Bellaterra, 08193 Barcelona, Spain
  • 9ICREA–Institucio Catalana de Recerca i Estudis Avancats, Lluis Companys 23, 08010 Barcelona, Spain
  • 10ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain

  • *Corresponding author: sessi@physik.uni-wuerzburg.de

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 94, Iss. 7 — 15 August 2016

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×