Thermal Ising transitions in the vicinity of two-dimensional quantum critical points

S. Hesselmann and S. Wessel
Phys. Rev. B 93, 155157 – Published 27 April 2016

Abstract

The scaling of the transition temperature into an ordered phase close to a quantum critical point as well as the order parameter fluctuations inside the quantum critical region provide valuable information about universal properties of the underlying quantum critical point. Here, we employ quantum Monte Carlo simulations to examine these relations in detail for two-dimensional quantum systems that exhibit a finite-temperature Ising-transition line in the vicinity of a quantum critical point that belongs to the universality class of either (i) the three-dimensional Ising model for the case of the quantum Ising model in a transverse magnetic field on the square lattice or (ii) the chiral Ising transition for the case of a half-filled system of spinless fermions on the honeycomb lattice with nearest-neighbor repulsion. While the first case allows large-scale simulations to assess the scaling predictions to a high precision in terms of the known values for the critical exponents at the quantum critical point, for the later case, we extract values of the critical exponents ν and η, related to the order parameter fluctuations, which we discuss in relation to other recent estimates from ground-state quantum Monte Carlo calculations as well as analytical approaches.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
6 More
  • Received 15 February 2016

DOI:https://doi.org/10.1103/PhysRevB.93.155157

©2016 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

S. Hesselmann and S. Wessel

  • Institut für Theoretische Festkörperphysik, JARA-FIT and JARA-HPC, RWTH Aachen University, 52056 Aachen, Germany

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 93, Iss. 15 — 15 April 2016

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×