Negative longitudinal magnetoresistance in Dirac and Weyl metals

A. A. Burkov
Phys. Rev. B 91, 245157 – Published 29 June 2015

Abstract

It has recently been found that Dirac and Weyl metals are characterized by an unusual weak-field longitudinal magnetoresistance: large, negative, and quadratic in the magnetic field. This has been shown to arise from the chiral anomaly, i.e., nonconservation of the chiral charge in the presence of external electric and magnetic fields, oriented collinearly. In this paper we report on a theory of this effect in both Dirac and Weyl metals. We demonstrate that this phenomenon contains two important ingredients. One is the magnetic-field-induced coupling between the chiral and the total (or vector, in relativistic field theory terminology) charge densities. This arises from the Berry curvature and is present in principle whenever the Berry curvature is nonzero, i.e., is nonspecific to Dirac and Weyl metals. This coupling, however, leads to a large negative quadratic magnetoresistance only when the second ingredient is present, namely when the chiral charge density is a nearly conserved quantity with a long relaxation time. This property is specific to Dirac and Weyl metals and is realized only when the Fermi energy is close to Dirac or Weyl nodes, expressing an important low-energy property of these materials, emergent chiral symmetry.

  • Figure
  • Received 11 May 2015

DOI:https://doi.org/10.1103/PhysRevB.91.245157

©2015 American Physical Society

Authors & Affiliations

A. A. Burkov

  • Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada and National Research University ITMO, Saint Petersburg 197101, Russia

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 91, Iss. 24 — 15 June 2015

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×