Shiba states and zero-bias anomalies in the hybrid normal-superconductor Anderson model

Rok Žitko, Jong Soo Lim, Rosa López, and Ramón Aguado
Phys. Rev. B 91, 045441 – Published 30 January 2015

Abstract

Hybrid semiconductor-superconductor systems are interesting melting pots where various fundamental effects in condensed-matter physics coexist. For example, when a quantum dot is coupled to a superconducting electrode two very distinct phenomena, superconductivity and the Kondo effect, compete. As a result of this competition, the system undergoes a quantum phase transition when the superconducting gap Δ is of the order of the Kondo temperature TK. The underlying physics behind such transition ultimately relies on the physics of the Anderson model where the standard metallic host is replaced by a superconducting one, namely the physics of a (quantum) magnetic impurity in a superconductor. A characteristic feature of this hybrid system is the emergence of subgap bound states, the so-called Yu-Shiba-Rusinov (YSR) states, which cross zero energy across the quantum phase transition, signaling a switching of the fermion parity and spin (doublet or singlet) of the ground state. Interestingly, similar hybrid devices based on semiconducting nanowires with spin-orbit coupling may host exotic zero-energy bound states with Majorana character. Both parity crossings and Majorana bound states (MBSs) are experimentally marked by zero-bias anomalies in transport, which are detected by coupling the hybrid device with an extra normal contact. We here demonstrate theoretically that this extra contact, usually considered as a nonperturbing tunneling weak probe, leads to nontrivial effects. This conclusion is supported by numerical renormalization-group calculations of the phase diagram of an Anderson impurity coupled to both superconducting and normal-state leads. We obtain this phase diagram for an arbitrary ratio ΔTK, which allows us to analyze relevant experimental scenarios, such as parity crossings as well as Kondo features induced by the normal lead, as this ratio changes. Spectral functions at finite temperatures and magnetic fields, which can be directly linked to experimental tunneling transport characteristics, show zero-energy anomalies irrespective of whether the system is in the doublet or singlet regime. We also derive the analytical condition for the occurrence of Zeeman-induced fermion-parity switches in the presence of interactions which bears unexpected similarities with the condition for emergent MBSs in nanowires.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
10 More
  • Received 5 June 2014
  • Revised 14 January 2015

DOI:https://doi.org/10.1103/PhysRevB.91.045441

©2015 American Physical Society

Authors & Affiliations

Rok Žitko1,2, Jong Soo Lim3, Rosa López4,5, and Ramón Aguado6

  • 1Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
  • 2Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
  • 3School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Korea
  • 4Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (UIB-CSIC), E-07122 Palma de Mallorca, Spain
  • 5Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030, USA
  • 6Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 91, Iss. 4 — 15 January 2015

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×