Current amplification and relaxation in Dirac systems

Alexandra Junck, Gil Refael, and Felix von Oppen
Phys. Rev. B 90, 245110 – Published 2 December 2014

Abstract

Recent experiments provide evidence for photocurrent generation in Dirac systems such as topological-insulator surface states and graphene. Within the simplest picture, the magnitude of the photocurrents is governed by the competition between photoexcitation of particle-hole pairs and current relaxation by scattering. Here, we study the relaxation of photocurrents by electron-electron (ee) collisions, which should dominate in clean systems. We compute the current relaxation rate as a function of the initial energies of the photoexcited carriers and the Fermi energy. For a positive Fermi energy, we find that collisions of a single excited electron with the Fermi sea can substantially increase the current, while for a single excited hole the current initially decreases. Together these processes partially cancel leading to a relative suppression of the relaxation of the total photocurrent carried by an electron-hole pair. We also analyze the limit of many scattering events and find that while ee collisions initially reduce the current associated with a single hole, the current eventually reverses sign and becomes as large in magnitude as in the electron case. Thus, for photoexcited electron-hole pairs, the current ultimately relaxes to zero. We discuss schemes which may allow one to probe the nontrivial current amplification physics for individual carriers in experiment.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 14 January 2014
  • Revised 1 October 2014

DOI:https://doi.org/10.1103/PhysRevB.90.245110

©2014 American Physical Society

Authors & Affiliations

Alexandra Junck1, Gil Refael2, and Felix von Oppen1

  • 1Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
  • 2Department of Physics, California Institute of Technology, Pasadena, California 91125, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 90, Iss. 24 — 15 December 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×