Competing charge-density wave, magnetic, and topological ground states at and near Dirac points in graphene in axial magnetic fields

Bitan Roy and Jay D. Sau
Phys. Rev. B 90, 075427 – Published 25 August 2014

Abstract

In the presence of axial magnetic fields that can be realized in deliberately buckled monolayer graphene, quasirelativistic Dirac fermions may find themselves in a variety of broken-symmetry phases even for weak repulsive interactions. Through a detailed Hartree self-consistent numerical calculation in finite strained graphene with cylindrical and open boundaries, we establish the possibility of realizing a charge-density wave order for the spinless fermions in the presence of weak nearest-neighbor repulsion. Such an instability gives rise to a staggered pattern of average fermionic density between bulk and boundary of the system as well as among two sublattices of honeycomb lattice, due to the spatial separation of the zero-energy states localized on opposite sublattices. Although with fermions spin restored, an unconventional magnetic order driven by the onsite repulsion possibly leads to the dominant instability at the Dirac point, the proposed charge-density wave order can nevertheless be realized at finite doping, which is always accompanied by a finite ferromagnetic moment. Additionally, the charge-density wave phase supports a quantized charge or spin Hall conductivity when its formation away from the Dirac point is further preceded by the appearance of topological anomalous or spin Hall insulator, respectively. The topological orders in strained graphene can be supported by weak second-neighbor repulsion, for example. Therefore, depending on the relative strength of various short-range components of the Coulomb interaction, several broken-symmetry phases can be realized within the zero-energy manifold in strained graphene.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 15 April 2014
  • Revised 1 August 2014

DOI:https://doi.org/10.1103/PhysRevB.90.075427

©2014 American Physical Society

Authors & Affiliations

Bitan Roy and Jay D. Sau

  • Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 90, Iss. 7 — 15 August 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×