Suppression of the Berezinskii-Kosterlitz-Thouless and quantum phase transitions in two-dimensional superconductors by finite-size effects

T. Schneider and S. Weyeneth
Phys. Rev. B 90, 064501 – Published 1 August 2014

Abstract

We perform a detailed finite-size scaling analysis of the sheet resistance in Bi films and the LaAlO3/SrTiO3 interface in the presence and absence of a magnetic field applied perpendicular to the system. Our main aim is to explore the occurrence of Berezinskii-Kosterlitz-Thouless (BKT) and quantum phase transition behavior in the presence of limited size, stemming from the finite extent of the homogeneous domains or the magnetic field. Moreover we explore the implications thereof. Above an extrapolated BKT transition temperature, modulated by the thickness d, gate voltage Vg, or magnetic field H, we identify a temperature range where BKT behavior occurs. Its range is controlled by the relevant limiting lengths, which are set by the extent of the homogeneous domains or the magnetic field. The extrapolated BKT transition lines Tc(d,Vg,H) uncover compatibility with the occurrence of a quantum phase transition where Tc(dc,Vgc,Hc)=0. However, an essential implication of the respective limiting length is that the extrapolated phase transition lines Tc(d,Vg,H) are unattainable. Consequently, given a finite limiting length, BKT and quantum phase transitions do not occur. Nevertheless, BKT and quantum critical behavior is observable, controlled by the extent of the relevant limiting length. Additional results and implications include: the magnetic-field-induced finite-size effect generates a flattening out of the sheet resistance in the T0 limit, while in zero field it exhibits a characteristic temperature dependence and vanishes at T=0 only. The former prediction is confirmed in both the Bi films and the LaAlO3/SrTiO3 interface as well as in previous studies. The latter is consistent with the LaAlO3/SrTiO3 interface data, while the Bi films exhibit a flattening out.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
8 More
  • Received 8 July 2014
  • Revised 22 July 2014

DOI:https://doi.org/10.1103/PhysRevB.90.064501

©2014 American Physical Society

Authors & Affiliations

T. Schneider* and S. Weyeneth

  • Physik-Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

  • *toni.schneider@swissonline.ch

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 90, Iss. 6 — 1 August 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×