Tuning the transport properties of graphene films grown by CVD on SiC(0001): Effect of in situ hydrogenation and annealing

B. Jabakhanji, A. Michon, C. Consejo, W. Desrat, M. Portail, A. Tiberj, M. Paillet, A. Zahab, F. Cheynis, F. Lafont, F. Schopfer, W. Poirier, F. Bertran, P. Le Fèvre, A. Taleb-Ibrahimi, D. Kazazis, W. Escoffier, B. C. Camargo, Y. Kopelevich, J. Camassel, and B. Jouault
Phys. Rev. B 89, 085422 – Published 24 February 2014

Abstract

The structural, optical, and transport properties of graphene grown by chemical vapor deposition (CVD) of propane under hydrogen on the Si face of SiC substrates have been investigated. We show that little changes in temperature during the growth can trigger the passivation of the SiC surface by hydrogen. Depending on the growth condition, hole or electron doping can be achieved, down to a few 1011 cm2. When the growth temperature is high (T15001550C), we obtain electron-doped graphene monolayers lying on a buffer layer. When the growth temperature is slightly lowered (T14501500C), hole-doped graphene layers are obtained, lying on a hydrogen-passivated SiC surface, as confirmed by the enhancement of the mobility (of the order of 4500 cm2/Vs) and the persistence of weak localization almost up to room temperature (250 K). The high homogeneity of this graphene allows the observation of the half-integer quantum Hall effect, typical of graphene, at the centimeter scale in the best cases. The influence of the SiC steps on the transport properties is discussed.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 1 July 2013
  • Revised 24 October 2013

DOI:https://doi.org/10.1103/PhysRevB.89.085422

©2014 American Physical Society

Authors & Affiliations

B. Jabakhanji1, A. Michon2, C. Consejo1, W. Desrat1, M. Portail2, A. Tiberj1, M. Paillet1, A. Zahab1, F. Cheynis3, F. Lafont4, F. Schopfer4, W. Poirier4, F. Bertran5, P. Le Fèvre5, A. Taleb-Ibrahimi5, D. Kazazis6, W. Escoffier7, B. C. Camargo8, Y. Kopelevich8, J. Camassel1, and B. Jouault1

  • 1Laboratoire Charles Coulomb, CNRS-Université de Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex, France
  • 2CNRS-CRHEA, rue Bernard Grégory, 06560 Valbonne, France
  • 3Aix Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille, France
  • 4Laboratoire National de Métrologie et d'Essais, 29 avenue Roger Hennequin, 78197 Trappes, France
  • 5Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France
  • 6CNRS-Laboratoire de Photonique et de Nanostructures, Route de Nozay, 91460 Marcoussis, France
  • 7Laboratoire National des Champs Magnétiques Intenses (LNCMI), CNRS-UPR3228, INSA, UJF, UPS, Université de Toulouse, 143 avenue de rangueil, 31400 Toulouse, France
  • 8Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Unicamp 13083-970, Campinas, São Paulo, Brazil

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 89, Iss. 8 — 15 February 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×