Orbital superexchange and crystal field simultaneously at play in YVO3: Resonant inelastic x-ray scattering at the V L edge and the O K edge

E. Benckiser, L. Fels, G. Ghiringhelli, M. Moretti Sala, T. Schmitt, J. Schlappa, V. N. Strocov, N. Mufti, G. R. Blake, A. A. Nugroho, T. T. M. Palstra, M. W. Haverkort, K. Wohlfeld, and M. Grüninger
Phys. Rev. B 88, 205115 – Published 13 November 2013

Abstract

We report on the observation of orbital excitations in YVO3 by means of resonant inelastic x-ray scattering (RIXS) at energies across the vanadium L3 and oxygen K absorption edges. At the V L3 edge, we are able to resolve the full spectrum of orbital excitations up to 5 eV. In order to unravel the effect of superexchange interactions and the crystal field on the orbital excitations, we analyzed the energy and temperature dependence of the intra-t2g excitations at 0.1–0.2 eV in detail. While these results suggest a dominant influence of the crystal field, peak shifts of about 13–20 meV observed as a function of the transferred momentum qa reflect a finite dispersion of the orbital excitations. This is puzzling since theoretical models based on superexchange interactions predict a dispersion only for qc. Furthermore, we demonstrate that RIXS at the O K edge is very sensitive to intersite excitations. At the O K edge, we observe excitations across the Mott-Hubbard gap and an additional feature at 0.4 eV, which we attribute to two-orbiton scattering, i.e., an exchange of orbitals between adjacent sites. Altogether, our results indicate that both superexchange interactions and the crystal field are important for a quantitative understanding of the orbital excitations in YVO3.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 22 July 2013

DOI:https://doi.org/10.1103/PhysRevB.88.205115

©2013 American Physical Society

Authors & Affiliations

E. Benckiser1,2,*, L. Fels1, G. Ghiringhelli3, M. Moretti Sala3,4, T. Schmitt5, J. Schlappa5,6, V. N. Strocov5, N. Mufti7,8, G. R. Blake7, A. A. Nugroho7,9, T. T. M. Palstra7, M. W. Haverkort2,10, K. Wohlfeld11,12, and M. Grüninger1,†

  • 1II. Physikalisches Institut, Zülpicher Str. 77, Universität zu Köln, 50937 Köln, Germany
  • 2Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
  • 3CNR/SPIN - Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy
  • 4European Synchrotron Radiation Facility, BP 220, 38043 Grenoble cedex, France
  • 5Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
  • 6Institut Methoden und Instrumentierung der Synchrotronstrahlung, BESSY II, Albert-Einstein-Str. 15, 12489 Berlin, Germany
  • 7Department of Chemical Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
  • 8Department of Physics, State University of Malang, Jl. Semarang No. 5, 65145 Malang, Indonesia
  • 9Jurusan Fisika, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
  • 10Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada V6T 1Z1
  • 11Institute for Theoretical Solid State Physics, IFW Dresden, D-01069 Dresden, Germany
  • 12Stanford Institute for Materials and Energy Sciences, Stanford University and SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

  • *e.benckiser@fkf.mpg.de
  • grueninger@ph2.uni-koeln.de

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 88, Iss. 20 — 15 November 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×