Constrained-DFT method for accurate energy-level alignment of metal/molecule interfaces

A. M. Souza, I. Rungger, C. D. Pemmaraju, U. Schwingenschloegl, and S. Sanvito
Phys. Rev. B 88, 165112 – Published 7 October 2013

Abstract

We present a computational scheme for extracting the energy-level alignment of a metal/molecule interface, based on constrained density functional theory and local exchange and correlation functionals. The method, applied here to benzene on Li(100), allows us to evaluate charge-transfer energies, as well as the spatial distribution of the image charge induced on the metal surface. We systematically study the energies for charge transfer from the molecule to the substrate as function of the molecule-substrate distance, and investigate the effects arising from image-charge confinement and local charge neutrality violation. For benzene on Li(100) we find that the image-charge plane is located at about 1.8 Å above the Li surface, and that our calculated charge-transfer energies compare perfectly with those obtained with a classical electrostatic model having the image plane located at the same position. The methodology outlined here can be applied to study any metal/organic interface in the weak coupling limit at the computational cost of a total energy calculation. Most importantly, as the scheme is based on total energies and not on correcting the Kohn-Sham quasiparticle spectrum, accurate results can be obtained with local/semilocal exchange and correlation functionals. This enables a systematic approach to convergence.

  • Figure
  • Figure
  • Figure
  • Received 8 July 2013

DOI:https://doi.org/10.1103/PhysRevB.88.165112

©2013 American Physical Society

Authors & Affiliations

A. M. Souza1, I. Rungger1, C. D. Pemmaraju1,*, U. Schwingenschloegl2, and S. Sanvito1

  • 1School of Physics and CRANN, Trinity College, Dublin 2, Ireland
  • 2PSE Division, KAUST, Thuwal 23955-6900, Saudi Arabia

  • *Present address: Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA.

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 88, Iss. 16 — 15 October 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×