• Rapid Communication

Visualizing spin-dependent bulk scattering and breakdown of the linear dispersion relation in Bi2Te3

P. Sessi, M. M. Otrokov, T. Bathon, M. G. Vergniory, S. S. Tsirkin, K. A. Kokh, O. E. Tereshchenko, E. V. Chulkov, and M. Bode
Phys. Rev. B 88, 161407(R) – Published 25 October 2013

Abstract

We performed a scanning tunneling spectroscopy investigation of the electronic properties of the topological insulator Bi2Te3 in the energy range between 200 and +700 meV with respect to the Fermi level. For unoccupied states, tunneling into topological surface states dominates. Analysis of Fourier-transformed (FT) dI/dU maps allowed us to obtain their energy dispersion relation and to visualize the breakdown of the linear dispersion relation typical of massless particles. For occupied states, no signature of scattering events involving surface states can be detected. FT dI/dU maps reveal in this case two scattering vectors pointing along the Γ¯M¯ and Γ¯K¯ directions. Both are identified with scattering events within bulk states. Interestingly, vectors pointing along Γ¯K¯ which correspond to bulk backscattering events have a length longer than the minimum distance necessary to match opposite pockets on a constant energy cut. Comparison with calculated spin-resolved constant-energy cuts shows that this is a direct consequence of the chiral spin texture present in bulk states when their energy and momentum are close to the resonances of the spin-polarized topological surface states.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 4 July 2013

DOI:https://doi.org/10.1103/PhysRevB.88.161407

©2013 American Physical Society

Authors & Affiliations

P. Sessi1,*, M. M. Otrokov2, T. Bathon1, M. G. Vergniory3, S. S. Tsirkin2,4, K. A. Kokh5,6, O. E. Tereshchenko6,7, E. V. Chulkov2,4,8,9, and M. Bode1,10

  • 1Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
  • 2Tomsk State University, prospekt Lenina 36, 634050 Tomsk, Russia
  • 3Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle, Germany
  • 4Donostia International Physics Center, Paseo de Manuel Lardizabal 4, 20018 San Sebastián/Donostia, Spain
  • 5V. S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
  • 6Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
  • 7A. V. Rzanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
  • 8Departamento de Física de Materiales, Universidad del País Vasco, Apartado 1072, 20080 San Sebastián/Donostia, Spain
  • 9Centro de Física de Materiales, Centro Mixto CSIC-UPV/EHU, Paseo de Manuel Lardizabal 5, 20018 San Sebastián/Donostia, Spain
  • 10Wilhelm Conrad Röntgen Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

  • *Corresponding author: paolo.sessi@physik.uni-wuerzburg.de

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 88, Iss. 16 — 15 October 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×