Combined experimental and computational study of the pressure dependence of the vibrational spectrum of solid picene C22H14

F. Capitani, M. Höppner, B. Joseph, L. Malavasi, G. A. Artioli, L. Baldassarre, A. Perucchi, M. Piccinini, S. Lupi, P. Dore, L. Boeri, and P. Postorino
Phys. Rev. B 88, 144303 – Published 3 October 2013

Abstract

We present high-quality optical data and density functional perturbation theory calculations for the vibrational spectrum of solid picene (C22H14) under pressure up to 8 GPa. First-principles calculations reproduce with a remarkable accuracy the pressure effects on both frequency and intensities of the observed phonon peaks. We use the projection on molecular eigenmodes to unambiguously fit the experimental spectra, resolving complicated spectral structures, in a system with hundreds of phonon modes. With these projections, we can also quantify the loss of molecular character under pressure. Our results indicate that picene, despite a 20% compression of the unit cell, remains substantially a molecular solid up to 8 GPa, with phonon modes displaying a smooth and uniform hardening with pressure, without any evidence of structural phase transitions. The Grüneisen parameter of the 1380 cm1 a1 Raman peak (γp=0.1) is much lower than the effective value (γd=0.8) due to K doping. Therefore, doping and pressure have very different effects and it can be argued that softening of the 1380 cm1 mode is probably due to coupling with electronic states in K-doped solid picene.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
5 More
  • Received 21 May 2013

DOI:https://doi.org/10.1103/PhysRevB.88.144303

©2013 American Physical Society

Authors & Affiliations

F. Capitani1, M. Höppner2, B. Joseph1, L. Malavasi3, G. A. Artioli3, L. Baldassarre4, A. Perucchi5, M. Piccinini6,*, S. Lupi7, P. Dore8, L. Boeri2,9, and P. Postorino7,†

  • 1Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 2, 00185 Roma, Italy
  • 2Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
  • 3Dipartimento di Chimica, Università di Pavia, Via Taramelli 16, 27100 Pavia, Italy
  • 4Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Roma, Italy
  • 5Sincrotrone Trieste, S.C.p.A., Area Science Park, I-34012 Basovizza, Trieste, Italy
  • 6Porto Conte Ricerche S.r.l., SP 55 km 8.400 Loc. Tramariglio, 07041 Alghero (SS), Italy
  • 7CNR-IOM and Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 2, 00185 Roma, Italy
  • 8CNR-SPIN and Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 2, 00185 Roma, Italy
  • 9Institute of Theoretical and Computational Physics, TU Graz, Petersgasse 16, 8010 Graz, Austria

  • *Present address: ENEA, C.R. Frascati, Via E. Fermi 45, 00044 Frascati, Rome, Italy.
  • Corresponding author: Paolo.Postorino@roma1.infn.it

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 88, Iss. 14 — 1 October 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×