Hydrostatic strain enhancement in laterally confined SiGe nanostripes

G. M. Vanacore, M. Chaigneau, N. Barrett, M. Bollani, F. Boioli, M. Salvalaglio, F. Montalenti, N. Manini, L. Caramella, P. Biagioni, D. Chrastina, G. Isella, O. Renault, M. Zani, R. Sordan, G. Onida, R. Ossikovski, H.-J. Drouhin, and A. Tagliaferri
Phys. Rev. B 88, 115309 – Published 20 September 2013

Abstract

Strain engineering in SiGe nanostructures is fundamental for the design of optoelectronic devices at the nanoscale. Here we explore a new strategy, where SiGe structures are laterally confined by the Si substrate, to obtain high tensile strain yet avoid the use of external stressors, thus improving the scalability. Spectromicroscopy techniques, finite element method simulations, and ab initio calculations are used to investigate the strain state of laterally confined Ge-rich SiGe nanostripes. Strain information is obtained by tip-enhanced Raman spectroscopy with an unprecedented lateral resolution of ∼30 nm. The nanostripes exhibit a large tensile hydrostatic strain component, which is maximal at the center of the top free surface and becomes very small at the edges. The maximum lattice deformation is larger than the typical values of thermally relaxed Ge/Si(001) layers. This strain enhancement originates from a frustrated relaxation in the out-of-plane direction, resulting from the combination of the lateral confinement induced by the substrate side walls and the plastic relaxation of the misfit strain in the (001) plane at the SiGe/Si interface. The effect of this tensile lattice deformation at the stripe surface is probed by work function mapping, which is performed with a spatial resolution better than 100 nm using x-ray photoelectron emission microscopy. The nanostripes exhibit a positive work function shift with respect to a bulk SiGe alloy, quantitatively confirmed by electronic structure calculations of tensile-strained configurations. The present results have a potential impact on the design of optoelectronic devices at a nanometer-length scale.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 6 June 2013

DOI:https://doi.org/10.1103/PhysRevB.88.115309

©2013 American Physical Society

Authors & Affiliations

G. M. Vanacore1,*, M. Chaigneau2, N. Barrett3, M. Bollani4, F. Boioli5,†, M. Salvalaglio5, F. Montalenti5, N. Manini6, L. Caramella6, P. Biagioni1, D. Chrastina7, G. Isella7, O. Renault8, M. Zani1, R. Sordan7, G. Onida6, R. Ossikovski2, H.-J. Drouhin9, and A. Tagliaferri1,‡

  • 1CNISM and Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy
  • 2LPICM, Ecole Polytechnique, CNRS, F-91128 Palaiseau, France
  • 3CEA Saclay, CEA DSM IRAMIS SPCSI, F-91191 Gif Sur Yvette, France
  • 4CNR-IFN e L-NESS I-22100 Como, Italy
  • 5Dipartimento di Scienza dei Materiali, Università Milano Bicocca, I-20100 Milano, Italy
  • 6Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, I-20133 Milano, Italy
  • 7CNISM e L-NESS, Dipartimento di Fisica, Politecnico di Milano, I-22100 Como, Italy
  • 8CEA, LETI, MINATEC Campus, 38054 Grenoble Cedex 9, France
  • 9LSI, Ecole Polytechnique, CNRS, F-91128 Palaiseau, France

  • *Present address: Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA.
  • Present address: UMET, University of Lille 1, Villeneuve d’Ascq, France.
  • Corresponding author: alberto.tagliaferri@fisi.polimi.it

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 88, Iss. 11 — 15 September 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×