Anisotropic absorption and emission of bulk (11¯00) AlN

Martin Feneberg, María Fátima Romero, Marcus Röppischer, Christoph Cobet, Norbert Esser, Benjamin Neuschl, Klaus Thonke, Matthias Bickermann, and Rüdiger Goldhahn
Phys. Rev. B 87, 235209 – Published 24 June 2013

Abstract

The intrinsic anisotropic optical properties of wurtzite AlN are investigated in absorption and emission. Full access to the anisotropy of the optical response of the hexagonal material is obtained by investigating the (11¯00) plane of a high-quality bulk crystal allowing electric field E polarization perpendicular (Ec) and parallel (Ec) to the optical axis c. Spectroscopic ellipsometry yields the ordinary (ɛ) and extraordinary (ɛ) dielectric functions (DFs) from 0.58 up to 20 eV. The comparison of the experimental data with recently calculated DFs demonstrates that Coulomb interaction has a strong impact not only on the spectral dependence around the fundamental absorption edge but also on the high-energy features usually discussed in terms of van Hove singularities. The fits of the second-order derivatives of ɛ and ɛ provide the transition energies for the main features in this range. The DFs close to the fundamental absorption edge, dominated by free excitons, exciton-phonon complexes, and the exciton continuum, are independently confirmed by reflectivity and synchrotron-based photoluminescence excitation studies. Values for the band gaps, the crystal field (Δcf=221±2 meV), and spin-orbit splittings (Δso=13±2 meV) are obtained. Furthermore, we obtain accurate values for the static dielectric constants of ɛS=7.65 and ɛS=9.21, entering, e.g., the calculations of exciton binding energies. Photoluminescence is used to investigate the emission properties of the same sample.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
2 More
  • Received 6 February 2013

DOI:https://doi.org/10.1103/PhysRevB.87.235209

©2013 American Physical Society

Authors & Affiliations

Martin Feneberg* and María Fátima Romero

  • Institut für Experimentelle Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany

Marcus Röppischer, Christoph Cobet, and Norbert Esser

  • Leibniz-Institut für Analytische Wissenschaften–ISAS–e.V., Albert-Einstein-Strasse 9, 12489 Berlin, Germany

Benjamin Neuschl and Klaus Thonke

  • Institut für Quantenmaterie/Gruppe Halbleiterphysik, Universität Ulm, 89069 Ulm, Germany

Matthias Bickermann

  • Department Werkstoffwissenschaften, Materialien für die Elektronik und Energietechnologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany

Rüdiger Goldhahn

  • Institut für Experimentelle Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany

  • *Corresponding author: martin.feneberg@ovgu.de
  • Present address: Leibniz Institute for Crystal Growth, Max-Born-Strasse 2, 12489 Berlin, Germany.

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 87, Iss. 23 — 15 June 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×