• Editors' Suggestion

Quantitative study of the spin Hall magnetoresistance in ferromagnetic insulator/normal metal hybrids

Matthias Althammer, Sibylle Meyer, Hiroyasu Nakayama, Michael Schreier, Stephan Altmannshofer, Mathias Weiler, Hans Huebl, Stephan Geprägs, Matthias Opel, Rudolf Gross, Daniel Meier, Christoph Klewe, Timo Kuschel, Jan-Michael Schmalhorst, Günter Reiss, Liming Shen, Arunava Gupta, Yan-Ting Chen, Gerrit E. W. Bauer, Eiji Saitoh, and Sebastian T. B. Goennenwein
Phys. Rev. B 87, 224401 – Published 5 June 2013

Abstract

We experimentally investigate and quantitatively analyze the spin Hall magnetoresistance effect in ferromagnetic insulator/platinum and ferromagnetic insulator/nonferromagnetic metal/platinum hybrid structures. For the ferromagnetic insulator, we use either yttrium iron garnet, nickel ferrite, or magnetite and for the nonferromagnet, copper or gold. The spin Hall magnetoresistance effect is theoretically ascribed to the combined action of spin Hall and inverse spin Hall effect in the platinum metal top layer. It therefore should characteristically depend upon the orientation of the magnetization in the adjacent ferromagnet and prevail even if an additional, nonferromagnetic metal layer is inserted between Pt and the ferromagnet. Our experimental data corroborate these theoretical conjectures. Using the spin Hall magnetoresistance theory to analyze our data, we extract the spin Hall angle and the spin diffusion length in platinum. For a spin-mixing conductance of 4×1014Ω1m2, we obtain a spin Hall angle of 0.11±0.08 and a spin diffusion length of (1.5±0.5)nm for Pt in our thin-film samples.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
2 More
  • Received 8 February 2013

DOI:https://doi.org/10.1103/PhysRevB.87.224401

©2013 American Physical Society

Authors & Affiliations

Matthias Althammer1,2,*, Sibylle Meyer1, Hiroyasu Nakayama3,4, Michael Schreier1, Stephan Altmannshofer1, Mathias Weiler1, Hans Huebl1, Stephan Geprägs1, Matthias Opel1, Rudolf Gross1,5, Daniel Meier6, Christoph Klewe6, Timo Kuschel6, Jan-Michael Schmalhorst6, Günter Reiss6, Liming Shen2, Arunava Gupta2, Yan-Ting Chen7, Gerrit E. W. Bauer3,7,8, Eiji Saitoh3,8,9,10, and Sebastian T. B. Goennenwein1,†

  • 1Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meissner-Strasse 8, 85748 Garching, Germany
  • 2University of Alabama, Center for Materials for Information Technology MINT and Department of Chemistry, Tuscaloosa, Alabama 35487, USA
  • 3Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
  • 4Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
  • 5Physik-Department, Technische Universität München, 85748 Garching, Germany
  • 6Fakultät für Physik, Universität Bielefeld, 33615 Bielefeld, Germany
  • 7Kavli Institute of NanoScience, Delft University of Technology, 2628 CJ Delft, The Netherlands
  • 8WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
  • 9CREST, Japan Science and Technology Agency, Tokyo 102-0076, Japan
  • 10The Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan

  • *Matthias.Althammer@wmi.badw-muenchen.de
  • Sebastian.Goennenwein@wmi.badw-muenchen.de

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 87, Iss. 22 — 1 June 2013

Reuse & Permissions
Access Options

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×