Correlation functions in the prethermalized regime after a quantum quench of a spin chain

Aditi Mitra
Phys. Rev. B 87, 205109 – Published 9 May 2013

Abstract

Results are presented for a two-point correlation function of a spin chain after a quantum quench for an intermediate time regime where inelastic effects are weak. A Callan-Symanzik-like equation for the correlation function is explicitly constructed which is used to show the appearance of three distinct scaling regimes. One is for spatial separations within a light cone, the second is for spatial separations on the light cone, and the third is for spatial separations outside the light cone. In these three regimes, the correlation function is found to decay with power laws with nonequilibrium exponents that differ from those in equilibrium, as well as from those obtained from quenches in a quadratic Luttinger liquid theory. A detailed discussion is presented on how the existence of scaling depends on the properties of the initial state before the quench.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 12 February 2013

DOI:https://doi.org/10.1103/PhysRevB.87.205109

©2013 American Physical Society

Authors & Affiliations

Aditi Mitra

  • Department of Physics, New York University, 4 Washington Place, New York, New York 10003, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 87, Iss. 20 — 15 May 2013

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×