Magnetic states in low-pinning high-anisotropy material nanostructures suitable for dynamic imaging

Felix Büttner, C. Moutafis, A. Bisig, P. Wohlhüter, C. M. Günther, J. Mohanty, J. Geilhufe, M. Schneider, C. v. Korff Schmising, S. Schaffert, B. Pfau, M. Hantschmann, M. Riemeier, M. Emmel, S. Finizio, G. Jakob, M. Weigand, J. Rhensius, J. H. Franken, R. Lavrijsen, H. J. M. Swagten, H. Stoll, S. Eisebitt, and M. Kläui
Phys. Rev. B 87, 134422 – Published 26 April 2013

Abstract

We present magnetic domain states in a material configuration with high (perpendicular) magnetic anisotropy and particularly low magnetic pinning. This material, a B-doped Co/Pt multilayer configuration, exhibits a strong magnetic contrast in x-ray transmission experiments, making it apt for dynamic imaging with modern synchrotron techniques, providing high spatial and high temporal resolution simultaneously. By analyzing the static spin structures in nanodisks at variable external fields, we show that CoB/Pt multilayers exhibit low enough domain wall pinning to manipulate the domain pattern with weak stimuli and in particular to move domains and domain walls. We demonstrate in a proof-of-principle experiment using pump-probe x-ray holographic imaging that moderate magnetic fields can induce elastic and deterministic and hence repeatable small variations of the domain configuration in CoB/Pt multilayers, which is the key to perform high-resolution imaging of the domain wall motion to gain insight to the details of the local magnetization dynamics.

  • Figure
  • Figure
  • Figure
  • Received 2 November 2012

DOI:https://doi.org/10.1103/PhysRevB.87.134422

©2013 American Physical Society

Authors & Affiliations

Felix Büttner1,2,3, C. Moutafis3,4,*, A. Bisig1,3,5,7, P. Wohlhüter5, C. M. Günther2, J. Mohanty2,†, J. Geilhufe6, M. Schneider2, C. v. Korff Schmising2, S. Schaffert2, B. Pfau2, M. Hantschmann2, M. Riemeier2, M. Emmel1, S. Finizio1, G. Jakob1, M. Weigand7, J. Rhensius5,8, J. H. Franken9, R. Lavrijsen9, H. J. M. Swagten9, H. Stoll7, S. Eisebitt2,6, and M. Kläui1,3,5

  • 1Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
  • 2Institut für Optik und Atomare Physik, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
  • 3SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland and Laboratory for Nanomagnetism and Spin Dynamics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
  • 4Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
  • 5Fachbereich Physik, University of Konstanz, 78457 Konstanz, Germany
  • 6Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
  • 7Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
  • 8Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
  • 9Department of Applied Physics, Center for NanoMaterials, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

  • *christoforos.moutafis@psi.ch
  • Present address: Department of Physics, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram, Andhra Pradesh 502205, India.

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 87, Iss. 13 — 1 April 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×