Electronic structure of twisted graphene flakes

W. Landgraf, S. Shallcross, K. Türschmann, D. Weckbecker, and O. Pankratov
Phys. Rev. B 87, 075433 – Published 21 February 2013

Abstract

We study the electronic structure of bilayer graphene flakes in which the constituent layers are mutually rotated by some angle θ. The large system sizes involved (up to 105 carbon atoms) necessitate the use of a tight-binding approach in conjunction with Lanczos diagonalization. We find that a single moiré spot is sufficient for the low-energy density of states to resemble closely that of the periodic analog of such flakes, the graphene twist bilayer, implying that the low-energy physics in this system is well described as that of a “moiré quantum well” trapping low-energy graphene electrons. Furthermore, a graphene twist flake consisting of a single moiré unit cell leads already to electron localization on the AA “moiré spot,” in agreement with this moiré quantum well picture. The electron density fluctuations induced by the moiré lattice in twist graphene flakes are significant, being an order of magnitude greater than those generated by the rippling of suspended graphene. Finally, we determine the electronic properties of such flakes in the presence of an external magnetic field, finding a “zero-mode” structure and Landau states that exhibit an electron current well described as a charge flow on a torus situated at the AA regions of the moiré lattice.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
6 More
  • Received 29 August 2012

DOI:https://doi.org/10.1103/PhysRevB.87.075433

©2013 American Physical Society

Authors & Affiliations

W. Landgraf, S. Shallcross, K. Türschmann, D. Weckbecker, and O. Pankratov

  • Lehrstuhl für Theoretische Festkörperphysik, Staudtstraße 7, D-91058 Erlangen, Germany

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 87, Iss. 7 — 15 February 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×