• Rapid Communication

Projected BCS states and spin Hamiltonians for the SO(n)1 Wess-Zumino-Witten model

Hong-Hao Tu
Phys. Rev. B 87, 041103(R) – Published 14 January 2013
PDFHTMLExport Citation

Abstract

We propose a class of projected BCS wave functions and derive their parent spin Hamiltonians. These wave functions can be formulated as infinite matrix product states constructed by chiral correlators of Majorana fermions. In one dimension, the spin Hamiltonians can be viewed as SO(n) generalizations of Haldane-Shastry models. We numerically compute the spin-spin correlation functions and Rényi entropies for n=5 and 6. Together with the results for n=3 and 4, we conclude that these states are critical and their low-energy effective theory is the SO(n)1 Wess-Zumino-Witten model. In two dimensions, we show that the projected BCS states are chiral spin liquids, which support non-Abelian anyons for odd n and Abelian anyons for even n.

  • Figure
  • Figure
  • Figure
  • Received 5 October 2012

DOI:https://doi.org/10.1103/PhysRevB.87.041103

©2013 American Physical Society

Authors & Affiliations

Hong-Hao Tu

  • Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 87, Iss. 4 — 15 January 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×