Superconducting proximity effect on the edge of fractional topological insulators

Meng Cheng
Phys. Rev. B 86, 195126 – Published 16 November 2012

Abstract

We study the superconducting proximity effect on the helical edge states of time-reversal-symmetric fractional topological insulators (FTI). The Cooper pairing of physical electrons results in many-particle condensation of the fractionalized excitations on the edge. We find localized zero-energy modes emerge at interfaces between superconducting regions and magnetically insulating regions, which are responsible for the topological degeneracy of the ground states. By mapping the low-energy effective Hamiltonian to the quantum chiral Potts model, we determine the operator algebra of the zero modes and show that they exhibit nontrivial braiding properties. We then demonstrate that the Josephson current in the junction between superconductors mediated by the edge states of the FTI exhibit fractional Josephson effect with period as multiples of 4π.

  • Figure
  • Received 11 May 2012

DOI:https://doi.org/10.1103/PhysRevB.86.195126

©2012 American Physical Society

Authors & Affiliations

Meng Cheng

  • Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 86, Iss. 19 — 15 November 2012

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×