Hidden and antiferromagnetic order as a rank-5 superspin in URu2Si2

Jeffrey G. Rau and Hae-Young Kee
Phys. Rev. B 85, 245112 – Published 13 June 2012

Abstract

We propose a candidate for the hidden order in URu2Si2: a rank-5 E type spin-density wave between uranium 5f crystal-field doublets Γ7(1) and Γ7(2), breaking time-reversal and lattice tetragonal symmetry in a manner consistent with recent torque measurements [Okazaki et al., Science 331, 439 (2011)]. We argue that coupling of this order parameter to magnetic probes can be hidden by crystal-field effects, while still having significant effects on transport, thermodynamics, and magnetic susceptibilities. In a simple tight-binding model for the heavy quasiparticles, we show the connection between the hidden order and antiferromagnetic phases arises since they form different components of this single rank-5 pseudospin vector. Using a phenomenological theory, we show that the experimental pressure-temperature phase diagram can be qualitatively reproduced by tuning terms which break pseudospin rotational symmetry. As a test of our proposal, we predict the presence of small magnetic moments in the basal plane oriented in the [110] direction ordered at the wave vector (0,0,1).

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 12 March 2012

DOI:https://doi.org/10.1103/PhysRevB.85.245112

©2012 American Physical Society

Authors & Affiliations

Jeffrey G. Rau1 and Hae-Young Kee1,2,*

  • 1Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
  • 2Canadian Institute for Advanced Research/Quantum Materials Program, Toronto, Ontario MSG 1Z8, Canada

  • *hykee@physics.utoronto.ca

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 85, Iss. 24 — 15 June 2012

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×