Inducing topological order in a honeycomb lattice

T. Pereg-Barnea and G. Refael
Phys. Rev. B 85, 075127 – Published 22 February 2012

Abstract

We explore the possibility of inducing a topological insulator phase in a honeycomb lattice lacking spin-orbit interaction using a metallic (or Fermi gas) environment. The lattice and the metallic environment interact through a density-density interaction without particle tunneling, and integrating out the metallic environment produces a honeycomb sheet with in-plane oscillating long-ranged interactions. We find the ground state of the interacting system in a variational mean-field method and show that the Fermi wave vector kF of the metal determines which phase occurs in the honeycomb lattice sheet. This is analogous to the Ruderman-Kittel-Kasuya-Yosida (RKKY) mechanism in which the metal's kF determines the interaction profile as a function of the distance. Tuning kF and the interaction strength may lead to a variety of ordered phases, including a topological insulator and anomalous quantum-Hall states with complex next-nearest-neighbor hopping, as in the Haldane and the Kane-Mele model. We estimate the required range of parameters needed for the topological state and find that the Fermi vector of the metallic gate should be of the order of 3π/8a (with a being the graphene lattice constant). The net coupling between the layers, which includes screening in the metal, should be of the order of the honeycomb lattice bandwidth. This configuration should be most easily realized in a cold-atoms setting with two interacting Fermionic species.

  • Figure
  • Figure
  • Received 23 November 2010

DOI:https://doi.org/10.1103/PhysRevB.85.075127

©2012 American Physical Society

Authors & Affiliations

T. Pereg-Barnea1 and G. Refael2

  • 1Department of Physics, McGill University, Montreal, QC, Canada
  • 2Department of Physics, California Institute of Technology, 1200 E. California Boulevard, MC114-36, Pasadena, California 91125, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 85, Iss. 7 — 15 February 2012

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×