Physical solutions of the Kitaev honeycomb model

Fabio L. Pedrocchi, Stefano Chesi, and Daniel Loss
Phys. Rev. B 84, 165414 – Published 10 October 2011

Abstract

We investigate the exact solution of the honeycomb model proposed by Kitaev and derive an explicit formula for the projector onto the physical subspace. The physical states are simply characterized by the parity of the total occupation of the fermionic eigenmodes. We consider a general lattice on a torus and show that the physical fermion parity depends in a nontrivial way on the vortex configuration and the choice of boundary conditions. In the vortex-free case with a constant gauge field we are able to obtain an analytical expression of the parity. For a general configuration of the gauge field the parity can be easily evaluated numerically, which allows the exact diagonalization of large spin models. We consider physically relevant quantities, as in particular the vortex energies, and show that their true value and associated states can be substantially different from the one calculated in the unprojected space, even in the thermodynamic limit.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 13 September 2011

DOI:https://doi.org/10.1103/PhysRevB.84.165414

©2011 American Physical Society

Authors & Affiliations

Fabio L. Pedrocchi1, Stefano Chesi1,2, and Daniel Loss1

  • 1Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
  • 2Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 84, Iss. 16 — 15 October 2011

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×