Dielectric function of the semiconductor hole liquid: Full frequency and wave-vector dependence

John Schliemann
Phys. Rev. B 84, 155201 – Published 12 October 2011

Abstract

We study the dielectric function of the homogeneous semiconductor hole liquid of p-doped bulk III-V zinc-blende semiconductors within random-phase approximation. The single-particle physics of the hole system is modeled by Luttinger’s four-band Hamiltonian in its spherical approximation. Regarding the Coulomb-interacting hole liquid, the full dependence of the zero-temperature dielectric function on wave vector and frequency is explored. The imaginary part of the dielectric function is analytically obtained in terms of complicated but fully elementary expressions, while in the result for the real part nonelementary one-dimensional integrations remain to be performed. The correctness of these two independent calculations is checked via Kramers-Kronig relations. The mass difference between heavy and light holes, along with variations in the background dielectric constant, leads to dramatic alternations in the plasmon excitation pattern, and, generically, two plasmon branches can be identified. These findings are the result of the evaluation of the full dielectric function and are not accessible via a high-frequency expansion. In the static limit a beating of Friedel oscillations between the Fermi wave numbers of heavy and light holes occurs.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 19 July 2011

DOI:https://doi.org/10.1103/PhysRevB.84.155201

©2011 American Physical Society

Authors & Affiliations

John Schliemann

  • Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 84, Iss. 15 — 15 October 2011

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×