Dzyaloshinsky-Moriya interaction and long lifetime of the spin state in the Cu3 triangular spin cluster by inelastic neutron scattering measurements

K. Iida, Y. Qiu, and T. J. Sato
Phys. Rev. B 84, 094449 – Published 28 September 2011

Abstract

Inelastic neutron scattering (INS) experiments have been performed on the Cu3 triangular molecular nanomagnet using powder samples. In the medium resolution INS experiment, two peaks were observed at ω=0.5 and 0.6 meV, whereas an additional excitation peak was detected at very low energy ω=0.1 meV in the higher resolution experiment. A model Hamiltonian and its optimum interaction parameters were determined from the observed peak position, width, and intensity. A key ingredient of the model Hamiltonian is Dzyaloshinsky-Moriya interactions as suggested in the earlier reports, which is now directly evidenced by the observation of the 0.1-meV peak, corresponding indeed to a splitting of ground-state quartet into two doublets. Temperature dependences of integrated intensity of the 0.5- and 0.6-meV peaks are well reproduced by the Boltzmann distribution function up to 10 K, above which a small deviation was detected. Nevertheless, the inelastic peaks were visible even at very high temperatures as 50 K, indicating extraordinary weak coupling between spins and lattice vibrations (or any other perturbations) compared to the other known molecular nanomagnets.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 18 May 2010

DOI:https://doi.org/10.1103/PhysRevB.84.094449

©2011 American Physical Society

Authors & Affiliations

K. Iida1,*, Y. Qiu2,3, and T. J. Sato1

  • 1Neutron Science Laboratory, Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
  • 2NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
  • 3Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA

  • *Present address: Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA; ki7e@virginia.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 84, Iss. 9 — 1 September 2011

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×