Half-metallicity in graphene nanoribbons with topological line defects

Xianqing Lin and Jun Ni
Phys. Rev. B 84, 075461 – Published 11 August 2011

Abstract

First-principles calculations have been performed to investigate the electronic properties of graphene nanoribbons with topological line defects composed of octagons and fused pentagons. We find that the edge-passivated zigzag graphene nanoribbons (ZGNRs) with the line defects along the edge show half-metallicity as the line defect is close to one edge. The electronic properties of the ZGNRs with line defects can be tuned by changing the ribbon width and the position of the line defect. When the position of the line defect changes, there are transitions from an antiferromagnetic semiconductor to an antiferromagnetic half-metal, and then to a ferromagnetic metal, suggesting the potential applications of the system in spintronic devices.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 7 February 2011

DOI:https://doi.org/10.1103/PhysRevB.84.075461

©2011 American Physical Society

Authors & Affiliations

Xianqing Lin and Jun Ni*

  • Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, People’s Republic of China

  • *junni@mail.tsinghua.edu.cn

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 84, Iss. 7 — 15 August 2011

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×