Inversion-symmetric topological insulators

Taylor L. Hughes, Emil Prodan, and B. Andrei Bernevig
Phys. Rev. B 83, 245132 – Published 28 June 2011

Abstract

We analyze translationally invariant insulators with inversion symmetry that fall outside the current established classification of topological insulators. These insulators exhibit no edge or surface modes in the energy spectrum and hence they are not edge metals when the Fermi level is in the bulk gap. However, they do exhibit protected modes in the entanglement spectrum localized on the cut between two entangled regions. Their entanglement entropy cannot be made to vanish adiabatically, and hence the insulators can be called topological. There is a direct connection between the inversion eigenvalues of the Hamiltonian band structure and the midgap states in the entanglement spectrum. The classification of protected entanglement levels is given by an integer N, which is the difference between the negative inversion eigenvalues at inversion symmetric points in the Brillouin zone, taken in sets of 2. When the Hamiltonian describes a Chern insulator or a nontrivial time-reversal invariant topological insulator, the entirety of the entanglement spectrum exhibits spectral flow. If the Chern number is zero for the former, or time reversal is broken in the latter, the entanglement spectrum does not have spectral flow, but, depending on the inversion eigenvalues, can still exhibit protected midgap bands similar to impurity bands in normal semiconductors. Although spectral flow is broken (implying the absence of real edge or surface modes in the original Hamiltonian), the midgap entanglement bands cannot be adiabatically removed, and the insulator is “topological.” We analyze the linear response of these insulators and provide proofs and examples of when the inversion eigenvalues determine a nontrivial charge polarization, a quantum Hall effect, an anisotropic three-dimensional (3D) quantum Hall effect, or a magnetoelectric polarization. In one dimension, we establish a link between the product of the inversion eigenvalues of all occupied bands at all inversion symmetric points and charge polarization. In two dimensions, we prove a link between the product of the inversion eigenvalues and the parity of the Chern number of the occupied bands. In three dimensions, we find a topological constraint on the product of the inversion eigenvalues thereby showing that some 3D materials are protected topological metals; we show the link between the inversion eigenvalues and the 3D Quantum Hall Effect, and analyze the magnetoelectric polarization (θ vacuum) in the absence of time-reversal symmetry.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
6 More
  • Received 16 November 2010

DOI:https://doi.org/10.1103/PhysRevB.83.245132

©2011 American Physical Society

Authors & Affiliations

Taylor L. Hughes1, Emil Prodan2, and B. Andrei Bernevig3

  • 1Department of Physics, University of Illinois, 1110 West Green Street, Urbana, Illinois 61801, USA
  • 2Department of Physics, Yeshiva University, New York, New York 10016, USA
  • 3Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 83, Iss. 24 — 15 June 2011

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×