• Featured in Physics
  • Editors' Suggestion

Electronic structure theory of the hidden-order material URu2Si2

P. M. Oppeneer, J. Rusz, S. Elgazzar, M.-T. Suzuki, T. Durakiewicz, and J. A. Mydosh
Phys. Rev. B 82, 205103 – Published 3 November 2010
Physics logo See Synopsis: Uncovering hidden order

Abstract

We report a comprehensive electronic structure investigation of the paramagnetic (PM), the large moment antiferromagnetic (LMAF), and the hidden order (HO) phases of URu2Si2. We have performed relativistic full-potential calculations on the basis of the density-functional theory, employing different exchange-correlation functionals to treat electron correlations within the open 5f shell of uranium. Specifically, we investigate—through a comparison between calculated and low-temperature experimental properties—whether the 5f electrons are localized or delocalized in URu2Si2. The local spin-density approximation (LSDA) and generalized gradient approximation (GGA) are adopted to explore itinerant 5f behavior, the GGA plus additional strong Coulomb interaction (GGA+U approach) is used to approximate moderately localized 5f states, and the 5f-core approximation is applied to probe potential properties of completely localized uranium 5f states. We also performed local-density approximation plus dynamical mean-field theory calculations (DMFT) to investigate the temperature evolution of the quasiparticle states at 100 K and above, unveiling a progressive opening of a quasiparticle gap at the chemical potential when temperature is reduced. A detailed comparison of calculated properties with known experimental data demonstrates that the LSDA and GGA approaches, in which the uranium 5f electrons are treated as itinerant, provide an excellent explanation of the available low-temperature experimental data of the PM and LMAF phases. We show furthermore that due to a material-specific Fermi-surface instability a large, but partial, Fermi-surface gapping of up to 750 K occurs upon antiferromagnetic symmetry breaking. The occurrence of the HO phase is explained through dynamical symmetry breaking induced by a mode of long-lived antiferromagnetic spin fluctuations. This dynamical symmetry breaking model explains why the Fermi-surface gapping in the HO phase is similar but smaller than that in the LMAF phase and it also explains why the HO and LMAF phases have the same Fermi surfaces yet different order parameters. A suitable order parameter for the HO is proposed to be the Fermi-surface gap, and the dynamic spin-spin correlation function is further suggested as a secondary order parameter.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
14 More
  • Received 27 July 2010

DOI:https://doi.org/10.1103/PhysRevB.82.205103

©2010 American Physical Society

Synopsis

Key Image

Uncovering hidden order

Published 3 November 2010

New calculations offer clues about the origin of the “hidden order” phase in URu2Si2.

See more in Physics

Authors & Affiliations

P. M. Oppeneer1, J. Rusz1, S. Elgazzar1,*, M.-T. Suzuki1, T. Durakiewicz2, and J. A. Mydosh3

  • 1Department of Physics and Astronomy, Uppsala University, P.O. Box 516, S-75120 Uppsala, Sweden
  • 2Condensed Matter and Thermal Physics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
  • 3Kamerlingh Onnes Laboratory, Leiden University, NL-2300 RA Leiden, The Netherlands

  • *On leave from Menoufia University, Menoufia, Egypt.

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 82, Iss. 20 — 15 November 2010

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×