Controlled expansion for certain non-Fermi-liquid metals

David F. Mross, John McGreevy, Hong Liu, and T. Senthil
Phys. Rev. B 82, 045121 – Published 26 July 2010

Abstract

The destruction of Fermi-liquid behavior when a gapless Fermi surface is coupled to a fluctuating gapless boson field is studied theoretically. This problem arises in a number of different contexts in quantum many-body physics. Examples include fermions coupled to a fluctuating transverse gauge field pertinent to quantum spin-liquid Mott insulators, and quantum critical metals near a Pomeranchuk transition. We develop a controlled theoretical approach to determine the low-energy physics. Our approach relies on combining an expansion in the inverse number (N) of fermion species with a further expansion in the parameter ϵ=zb2, where zb is the dynamical critical exponent of the boson field. We show how this limit allows a systematic calculation of the universal low-energy physics of these problems. The method is illustrated by studying spinon Fermi-surface spin liquids, and a quantum critical metal at a second-order electronic nematic phase transition. We calculate the low-energy single-particle spectra, and various interesting two-particle correlation functions. In some cases, deviations from the popular random-phase approximation results are found. Some of the same universal singularities are also calculated to leading nonvanishing order using a perturbative renormalization-group calculation at small N extending previous results of Nayak and Wilczek. Implications for quantum spin liquids and for Pomeranchuk transitions are discussed. For quantum critical metals at a nematic transition, we show that the tunneling density of states has a power-law suppression at low energies.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
8 More
  • Received 9 March 2010

DOI:https://doi.org/10.1103/PhysRevB.82.045121

©2010 American Physical Society

Authors & Affiliations

David F. Mross, John McGreevy, Hong Liu, and T. Senthil

  • Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 82, Iss. 4 — 15 July 2010

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×