Electronic damping of anharmonic adsorbate vibrations at metallic surfaces

Jean Christophe Tremblay, Serge Monturet, and Peter Saalfrank
Phys. Rev. B 81, 125408 – Published 5 March 2010

Abstract

The nonadiabatic coupling of an adsorbate close to a metallic surface leads to electronic damping of adsorbate vibrations and line broadening in vibrational spectroscopy. Here, a perturbative treatment of the electronic contribution to the lifetime broadening serves as a building block for a new approach, in which anharmonic vibrational transition rates are calculated from a position-dependent coupling function. Different models for the coupling function will be tested, all related to embedding theory. The first two are models based on a scattering approach with (i) a jellium-type and (ii) a density functional theory based embedding density, respectively. In a third variant a further refined model is used for the embedding density, and a semiempirical approach is taken in which a scaling factor is chosen to match harmonic, single-site, first-principles transition rates, obtained from periodic density functional theory. For the example of hydrogen atoms on (adsorption) and below (subsurface absorption) a Pd(111) surface, lifetimes of and transition rates between vibrational levels are computed. The transition rates emerging from different models serve as input for the selective subsurface adsorption of hydrogen in palladium starting from an adsorption site, by using sequences of infrared laser pulses in a laser distillation scheme.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 20 November 2009

DOI:https://doi.org/10.1103/PhysRevB.81.125408

©2010 American Physical Society

Authors & Affiliations

Jean Christophe Tremblay*, Serge Monturet, and Peter Saalfrank

  • Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany

  • *jean.c.tremblay@gmail.com

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 81, Iss. 12 — 15 March 2010

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×