Phase diagrams of the XXZ model on a depleted square lattice

Kwai-Kong Ng
Phys. Rev. B 81, 094426 – Published 25 March 2010

Abstract

Using quantum Monte Carlo (QMC) simulations and a mean field theory, we investigate the spin-1/2 XXZ model with nearest-neighbor interactions on a periodic depleted square lattice. In particular, we present results for 1/4 depleted lattice in an applied magnetic field and investigate the effect of depletion on the ground state. The ground state phase diagram is found to include an antiferromagnetic (AF) phase of magnetization mz=±1/6 and an in-plane ferromagnetic (FM) phase with finite spin stiffness. The agreement between the QMC simulations and the mean-field theory based on resonating trimers suggests the AF phase and in-plane FM phase can be interpreted as a Mott insulator and superfluid of trimer states, respectively. While the thermal transitions of the in-plane FM phase are well described by the Kosterlitz-Thouless transition, the quantum-phase transition from the AF phase to in-plane FM phase undergo a direct second-order insulator-superfluid transition upon increasing magnetic field.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 3 December 2009

DOI:https://doi.org/10.1103/PhysRevB.81.094426

©2010 American Physical Society

Authors & Affiliations

Kwai-Kong Ng

  • Department of Physics, Tunghai University, Taichung, Taiwan

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 81, Iss. 9 — 1 March 2010

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×